Компетенции по литературе в 10-11 классах Общеучебные умения, навыки и способы деятельности

Вид материалаПримерная программа

Содержание


В результате изучения математики ученик должен
Алгебра Уметь
Элементы логики, комбинаторики
Требования к уровню подготовки
Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей
Общеучебные умения, навыки и способы деятельности.
В результате изучения математики на базовом уровне ученик должен
Алгебра Уметь
Функции и графики
Начала математического анализа
Уравнения и неравенства
Элементы комбинаторики
По математике профильных классов
Общеучебные умения, навыки и способы деятельности.
Подобный материал:
1   2   3   4

В результате изучения математики ученик должен

знать/понимать:

 существо понятия математического доказательства; приводить примеры доказательств;

 существо понятия алгоритма; приводить примеры алгоритмов;

 как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

 как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

 как потребности практики привели математическую науку к необходимости расширения понятия числа;

 вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

 каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

 смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.


Арифметика

Уметь:

 выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;

 переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;

 выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;

 округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;

 пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

 решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;

 устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

 интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.


Алгебра

Уметь:

 составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

 выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;

 применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;

 решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;

 решать линейные и квадратные неравенства с одной переменной и их системы;

 решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;

 изображать числа точками на координатной прямой;

 определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;

 распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;

 находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;

 определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;

 описывать свойства изученных функций, строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

 моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

 описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;

 интерпретации графиков реальных зависимостей между величинами.


Геометрия

Уметь:

 пользоваться геометрическим языком для описания предметов окружающего мира;

 распознавать геометрические фигуры, различать их взаимное расположение;

 изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;

 распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

 в простейших случаях строить сечения и развертки пространственных тел;

 проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;

 вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;

 решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;

 проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;

 решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для описания реальных ситуаций на языке геометрии;

 расчетов, включающих простейшие тригонометрические формулы;

 решения геометрических задач с использованием тригонометрии;

 решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);

 построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).


Элементы логики, комбинаторики,

статистики и теории вероятностей

Уметь:

 проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;

 извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

 решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;

 вычислять средние значения результатов измерений;

 находить частоту события, используя собственные наблюдения и готовые статистические данные;

 находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для выстраивания аргументации при доказательстве и в диалоге;

 распознавания логически некорректных рассуждений;

 записи математических утверждений, доказательств;

 анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

 решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;

 решения учебных и практических задач, требующих систематического перебора вариантов;

 сравнения шансов наступления случайных событий, для оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;

 понимания статистических утверждений.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ

УЧАЩИХСЯ III СТУПЕНИ ПО МАТЕМАТИКЕ

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: «Алгебра», «Функции», «Уравнения и неравенства», «Геометрия», «Элементы комбинаторики, теории вероятностей, статистики и логики», вводится линия «Начала математического анализа». В рамках указанных содержательных линий решаются следующие з а д а ч и:

 систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;

 расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;

 изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;

 развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;

 знакомство с основными идеями и методами математического анализа.


Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;

развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;

овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;

воспитание средствами математики культуры личности: отношения к математике как части общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности.

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

 построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;

 выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;

 самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;

 проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;

 самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.


В результате изучения математики на базовом уровне ученик должен

знать/понимать:

 значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;

 значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;

 универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;

 вероятностный характер различных процессов окружающего мира.


Алгебра

Уметь:

 выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;

 проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;

 вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства.


Функции и графики

Уметь:

 определять значение функции по значению аргумента при различных способах задания функции;

 строить графики изученных функций;

 описывать по графику и в простейших случаях по формуле2 поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

 решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков.


Начала математического анализа

Уметь:

 вычислять производные и первообразные элементарных функций, используя справочные материалы;

 исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения.


Уравнения и неравенства

Уметь:

 решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;

 составлять уравнения и неравенства по условию задачи;

 использовать для приближенного решения уравнений и неравенств графический метод;

 изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для построения и исследования простейших математических моделей.


Элементы комбинаторики,

статистики и теории вероятностей

Уметь:

 решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;

 вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для анализа реальных числовых данных, представленных в виде диаграмм, графиков;

 анализа информации статистического характера.


Геометрия

Уметь:

 распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

 описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;

 анализировать в простейших случаях взаимное расположение объектов в пространстве;

 изображать основные многогранники и круглые тела; выполнять чертежи по условиям задач;

строить простейшие сечения куба, призмы, пирамиды;

 решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей, объемов);

 использовать при решении стереометрических задач планиметрические факты и методы;

 проводить доказательные рассуждения в ходе решения задач;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

 для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;

 вычисления объемов и площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.


Требования к уровню подготовки УЧАЩИХСЯ III СТУПЕНИ

ПО МАТЕМАТИКЕ ПРОФИЛЬНЫХ КЛАССОВ

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих н а п р а в л е н и я х:

 систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;

 развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;

 систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие геометрические, физические и другие прикладные задачи;

 расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

 развитие представлений о вероятностно-статистических закономерностях в окружающем мире;

 совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

 формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Ц е л и.

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;

овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественнонаучных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;

развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;

воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности.

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

 проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

 решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

 планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

 построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

 самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.