Научное пособие разработано авторами: Никитюк Л. А., Тихонов В. И., Боярских П. В. Научное пособие рассмотрено и утверждено на заседании кафедры
Вид материала | Документы |
- Учебно-научное пособие Бишкек 2011 удк 82/821., 1207.45kb.
- Казачеств а, 918.58kb.
- Учебно-методический комплекс по дисциплине «Теория государства и права» Рассмотрено, 1162.62kb.
- Учебное пособие рассмотрено и одобрено на заседании кафедры экономики и управления, 1175.93kb.
- Методическое пособие рассмотрено и утверждено на заседании учебно-методического совета, 1561.04kb.
- Пособие издается в соответствии с учебным планом для студентов специальности 350400, 417.21kb.
- Учебно-методический комплекс по дисциплине «основы маркетинга» Учебное пособие, 2315.48kb.
- А. В. Корниенко дискурсный анализ учебное пособие, 388.48kb.
- Методическое пособие по практике устной и письменной речи английского языка для студентов, 739.9kb.
- Отчет о нирс кафедры Денег, кредита и финансов за 2010-2011, 157.14kb.
Министерство транспорта и связи Украины
________________________
Государственный департамент по вопросам связи и информатизации
Одесская национальная академия связи им. А.С. Попова
Кафедра сетей связи
Телекоммуникационные и информационные сети
Модуль 4.3 Проектирование мультисервисной сети
ПРОЕКТИРОВАНИЕ МУЛЬТИСЕРВИСНОЙ СЕТИ
Часть 2
Для студентов всех форм обучения
По направлению: Телекоммуникации
Специальность: Информационные сети связи
Одесса - 2006
Научное пособие разработано авторами: Никитюк Л.А., Тихонов В. И., Боярских П.В.
Научное пособие рассмотрено и утверждено на заседании кафедры.
Протокол № _____ от «___» ____________ 2006
Зав. Кафедрой ___________________
Научное пособие рассмотрено и утверждено Учебным (методичным) советом ННИ (факультета)
Протокол № _____ от «___» ____________ 2006
Декан ф-та ___________________ ( )
Общие положения
Мультисервисные сети обеспечивают возможность предоставления пользователям наиболее широкого спектра качественных услуг при эффективном использовании передающих ресурсов сети и универсальном способе обработки нагрузки, порождаемой различными приложениями. Основной транспортной технологией мультисервисных сетей является технология АТМ (Asynchronous Transfer Mode) [1].
АТМ, как стандартизированная архитектура пакетно-ориентированной передачи и коммутации, первоначально предназначалась для обслуживания широкополосных цифровых сетей с интеграцией служб (B-ISDN). С тех пор возможности АТМ были расширены для поддержки различных типов служб: широкополосных, узкополосных, пульсирующего трафика, приложений реального времени.
Коммутация пакетов происходит на основе идентификатора виртуального канала (Virtual Channel Identifier, VCI), который назначается соединению при его установлении и уничтожается при разрыве соединения. Адрес конечного узла ATM, на основе которого прокладывается виртуальный канал, имеет иерархическую структуру, подобную номеру в телефонной сети, и использует префиксы, соответствующие кодам стран, городов, сетям поставщиков услуг и т. п., что упрощает маршрутизацию запросов на установление соединения.
Виртуальные соединения могут быть постоянными (Permanent Virtual Circuit, PVC) и коммутируемыми (Switched Virtual Circuit, SVC). Для ускорения коммутации в больших сетях используется понятие виртуального пути — Virtual Path, который объединяет виртуальные каналы, имеющие в сети ATM общий маршрут между исходным и конечным узлами или общую часть маршрута между некоторыми двумя коммутаторами сети. Идентификатор виртуального пути (Virtual Path Identifier, VPI) является старшей частью локального адреса и представляет собой общий префикс для некоторого количества различных виртуальных каналов. Таким образом, идея агрегирования адресов в технологии ATM применена на двух уровнях — на уровне адресов конечных узлов (работает на стадии установления виртуального канала) и на уровне номеров виртуальных каналов (работает при передаче данных по имеющемуся виртуальному каналу).
Для каждого типа служб АТМ обеспечивает заданное качество обслуживания нагрузки, которое оценивается такими параметрами как задержка пакетов дисперсия задержки и вероятность потери пакетов. Эта опция называется QoS (Quality of Service). Обеспечение QoS является коренным отличием технологии АТМ от существующих сетевых технологий и позволяет полноценно передавать интегральный трафик (голос, видео, данные). При этом весь разнородный трафик преобразуется в стандартные ячейки – 48-байтовые пакеты, дополнение 5-байтовыми заголовками.
В зависимости от требований источников к скорости передачи и QoS различают следующие основания категории классов трафика:
- с постоянной битовой скоростью СBR (Constant Bit Rate);
- с переменной битовой скоростью VBR (Variable Bit Rate);
- с доступной битовой скоростью ABR (Available Bit Rate);
- с негарантированной битовой скоростью UBR (Unspecified Bit Rate).
Основными сетевыми устройствами АТМ являются АТМ-коммутаторы, с помощью которых организуются виртуальные соединения на время сеанса связи и обеспечивается предоставление QoS пользователям. [1]
В сетях АТМ различают два типа интерфейсов: UNI (User-Network Interface) и NNI (Network-Node Interface). Интерфейс UNI обеспечивает подключение периферийного не АТМ устройства (например, маршрутизатора) к АТМ коммутатору опорной сети. Интерфейс NNI используется для взаимодействия между АТМ коммутаторами.
Сети АТМ строятся по принципу коммутируемой среды (коммутируемой топологии) с выделением уровней доступа, распределения и ядра. Уровень доступа в территориальных сетях представляет собой опорную сеть, объединяющую коммутаторы АТМ, расположенные в областных узлах коммутации. Уровень распределения определяют зональные узлы с размещениями в них АТМ-коммутаторами. Коммутаторы уровня ядра размещаются в главных территориальных узлах.
В сетях АТМ различают два типа интерфейсов: UNI (User-Network Interface) и NNI (Network-Node Interface). Інтерфейс UNI обеспечивает подключение переферийного не АТМ оборудования (например, маршрутизаторов) к АТМ комутатору опорной сети. Спецификация UNI определяет структуру пакета, адресацию станций, обмен управляющей информацией, уровни протокола ATM, способы установления виртуального канала и способы управления трафиком. Интерфейс NNI используется для взаимодействия между АТМ комутаторами
Сети АТМ строятся по принципу коммутируемой топологии с выделением уровней доступа, распределения и ядра. Уровень доступа в территориальных сетях является опорной сетью, которая объединяет коммутаторы АТМ, расположенные в областных узлах коммутации. Уровень распределения определяют зональные узлы с размещенными в них АТМ-коммутаторами. Коммутаторы уровня ядра размещаются в главных территориальных узлах.
Стандарт ATM не вводит свои спецификации на реализацию физического уровня. Здесь он основывается на технологии SDH/SONET, принимая ее иерархию скоростей. В соответствии с этим начальная скорость доступа пользователя сети — это скорость STM-1 155 Мбит/с. Магистральное оборудование ATM работает и на более высоких скоростях STM-4 622 Мбит/с и STM-16 2,5 Гбит/с. На скорости 155 Мбит/с можно использовать не только волоконно-оптический кабель, но и неэкранированную витую пару категории 5. На скорости 622 Мбит/с допустим только волоконно-оптический кабель. Работа на сверхвысоких скоростях существенно удорожает оборудование ATM из-за сложности реализации операций разбиения пакетов на ячейки и сборки ячеек в пакеты в заказных интерфейсных коммутаторов.
Имеются и другие физические интерфейсы к сетям ATM, отличные от SDH/ SONET. К ним относятся интерфейсы Т1/Е1 и ТЗ/ЕЗ, распространенные в глобальных сетях, и интерфейсы локальных сетей — интерфейс с кодировкой 4В/5В со скоростью 100 Мбит/с (FDDI) и интерфейс со скоростью 25 Мбит/с, предложенный компанией IBM и утвержденный ATM Forum. Кроме того, для скорости 155,52 Мбит/с определен так называемый физический уровень «cell-based», то есть уровень, основанный на ячейках, а не на кадрах SDH/SONET. Этот вариант физического уровня не использует кадры SDH/SONET, а отправляет по каналу связи непосредственно ячейки формата ATM, что сокращает накладные расходы на служебные данные, но несколько усложняет задачу синхронизации приемника с передатчиком на уровне ячеек.
Рисунок 1 – Коммутируемая топология
Класс трафика (называемый также классом услуг — service class) качественно характеризует требуемые услуги по передаче данных через сеть ATM. Если приложение указывает сети, что требуется, например, передача голосового трафика, то из этого становится ясно, что особенно важными для пользователя будут такие показатели качества обслуживания, как задержки и вариации задержек ячеек, существенно влияющие на качество переданной информации — голоса или изображения, а потеря отдельной ячейки с несколькими замерами не так уж важна, так как, например, воспроизводящее голос устройство может аппроксимировать недостающие замеры и качество пострадает не слишком. Требования к синхронности передаваемых данных очень важны для многих приложений — не только голоса, но и видеоизображения, и наличие этих требований стало первым критерием для деления трафика на классы.
В результате было определено пять классов трафика, отличающихся следующими качественными характеристиками:
- наличием или отсутствием пульсации трафика, то есть трафики CBR или VBR;
- требованием к синхронизации данных между передающей и принимающей сторонами;
- типом протокола, передающего свои данные через сеть ATM, — с установлением соединения или без установления соединения (только для случая передачи компьютерных данных).
Основные характеристики классов АТМ трафика приведены в
Таблице 1.
Таблиця 1 - Классы АТМ трафика
Классы трафика | Характеристика |
А | Постоянная битовая скорость (Constant Bit Rate, CBR) |
Необходимы временные соотношения между передаваемыми и принимаемыми данными | |
С установлением соеденения | |
Примеры: голосовой трафик, трафик телевизионного изображения | |
В | Переменная битовая скорость (Variable Bit Rate, VBR) |
Необходимы временные соотношения между передаваемыми и принимаемыми данными | |
С установлением соеденения | |
Примеры: компрессированный голос, компрессированное видеоизображение | |
С | Переменная битовая скорость (Variable Bit Rate, VBR) |
Не требуются временные соотношения между передаваемыми и принимаемыми данными | |
С установлением соеденения | |
Примеры: трафик компьютерных сетей, в которых конечные узлы работают по протоколам с установлением соединения: frame relay, X.25, TCP | |
D | Переменная битовая скорость (Variable Bit Rate, VBR) |
Не требуются временные соотношения между передаваемыми и принимаемыми данными | |
Без установления соеденения | |
Примеры: трафик компьютерных сетей, в которых конечные узлы работают по протоколам без установлением соединения: IP, Ethernet, SNMP. | |
X | Тип трафика и его параметры определяются пользователем |
Очевидно, что только качественных характеристик, задаваемых классом трафика, для описания требуемых услуг недостаточно.. В технологии ATM для каждого класса трафика определен набор количественных параметров, которые приложение должно задать. Например, для трафика класса А необходимо указать постоянную скорость, с которой приложение будет посылать данные в сеть, а для трафика класса В — максимально возможную скорость, среднюю скорость и максимально возможную пульсацию. Для голосового трафика можно не только указать на важность синхронизации между передатчиком и приемником, но и количественно задать верхние границы задержки и вариации задержки ячеек.
В технологии ATM поддерживается следующий набор основных количественных параметров:
- Peak Cell Rate (PCR) — максимальная скорость передачи данных;
- Sustained Cell Rate (SCR) — средняя скорость передачи данных;
- Minimum Cell Rate (MCR) — минимальная скорость передачи данных;
- Maximum Burst Size (MBS) — максимальный размер пульсации;
- Cell Loss Ratio (CLR) - доля потерянных ячеек;
- Cell Transfer Delay (CTD) - задержка передачи ячеек;
- Cell Delay Variation (CDV) - вариация задержки ячеек.
Параметры скорости измеряются в ячейках в секунду, максимальный размер пульсации — в ячейках, а временные параметры — в секундах. Максимальный размер пульсации определяет количество ячеек, которое приложение может передать с максимальной скоростью PCR, если задана средняя скорость. Доля потерянных ячеек является отношением потерянных ячеек к общему количеству отправленных ячеек по данному виртуальному соединению. Так как виртуальные соединения являются дуплексными, то для каждого направления соединения могут быть заданы разные значения параметров.
Соглашение между приложением и сетью ATM называется трафик-контрактом. Основным его отличием от соглашений, применяемых в сетях frame relay, является выбор одного из нескольких определенных классов трафика, для которого наряду с параметрами пропускной способности трафика могут указываться параметры задержек ячеек, а также параметр надежности доставки ячеек. [2]
1. Проектное задание
Целью курсового проекта является организация платформы предоставления заданного перечня услуг (включая широкополосные) и определение их качества.
Поставленная цель достигается решением следующих проектных задач:
Расчёт трафика, генерируемого абонентами объектов сети и формирование матрицы взаимного тяготения между объектами.
- Синтез структуры сети и формирование матрицы связей.
- Выбор коммутационного оборудования узлов (коммутаторов АТМ) и формирование требований к оборудованию систем передачи линий связи по предоставлению необходимой полосы пропускания.
- Исходные данные к проектированию
- Масштаб территории, охватываемой сетью, определяется границами Украины. В качестве объектов сети принимаются области административного деления Украины, общее количество которых n=25 (карта Украины приведена в Приложении А). Возникающая нагрузка объекта сети концентрируется в областном центре. Областные центры рассматриваются в качестве мест расположения узлов уровня доступа в мультисервисную сеть.
- В качестве потенциальных абонентов для каждого объекта сети рассматривается население областей Украины (см. Таблицу 2).
Перечень служб, обеспечивающих предоставление широкополосных услуг, с указанием класса пользователей (КС – квартирный сектор, ДС – деловой сектор, УАТС – учрежденческие АТС, Центр служб) и параметров трафика приведен в Таблице 3.
- Структурный состав абонентов объектов сети приведен в Приложении Б (вариант выбирается согласно порядковому номеру студента в журнале группы).
ПРИМЕЧАНИЕ:
При определении количества абонентов по каждой службе на объектах сети следует учитывать, что в каждый момент времени одновременно в сети работает только w (%) от общего количества абонентов. Процент одновременно работающих пользователей сети выбирается согласно варианту из Таблицы 4 (номер варианта соответствует последней цифре студенческого билета).
- Матрица расстояний R = || rij || , размерностью (25х25), где элемент rij определяет расстояние между узлами i и j по кабелю первичной сети, приведена в Таблице 5.
- Количество зон сети и наименования зональных узлов выбирается из Таблицы 4 согласно заданному варианту (вариант выбирается по предпоследней цифре студенческого билета). В соответствии с рассматриваемой коммутируемой топологией проектируемой сети (Рис.1) на уровне доступа используются областные узлы.
Таблица 2. - Население областей Украины
№ объекта сети | Область | Количество потенциальных абонентов, тыс. чел. |
1 | Винницкая | 1772,4 |
2 | Днепропетровская | 3567,6 |
3 | Донецкая | 4841,1 |
4 | Житомирская | 1389,5 |
5 | Запорожская | 1929,2 |
6 | Ивано-Франковская | 1409,8 |
7 | Киевская | 4439,2 |
8 | Кировоградская | 1133,1 |
9 | Луганская | 2546,2 |
10 | Волынская (Луцк) | 1060,7 |
11 | Львовская | 2626,5 |
12 | Николаевская | 1264,7 |
13 | Одесская | 2469 |
14 | Полтавская | 1630,1 |
15 | Ровенская | 1173,3 |
16 | АР Крым (Симферополь) | 2413,2 |
17 | Сумская | 1299,7 |
18 | Тернопольская | 1142,4 |
19 | Закарпатская (Ужгород) | 1258,3 |
20 | Херсонская | 2914,2 |
21 | Харьковская | 1175,1 |
22 | Хмельницкая | 1430,8 |
23 | Черкасская | 1402,9 |
24 | Черниговская | 1245,3 |
25 | Черновицкая | 922,8 |
Таблица 3. – Перечень служб с указанием класса пользователей
Служба к | Класс пользователей qк | Пиковая скорость , бит/с | Пачечность pch(qk) | Длительность пика или сеанса связи | Число вызовов в ЧНН | |
с | с | |||||
1 Телефония | КС ДС УАТС | 64К 64К 64К | 1 1 1 | 100 100 100 | 100 100 100 | 3,6 14,4 162,0 |
2 Факс (цветной) | ДС УАТС | 2М 2М | 1 1 | 3 3 | 3 3 | 12,0 12,0 |
3 Видео-телефония | КС ДС УАТС | 10М 10М 10М | 5 5 5 | 1 1 1 | 100 100 100 | 0,72 0,72 3,60 |
4 Поиск видео | КС ДС УАТС Центр служб | 10М 10М 10М 10М | 18 18 18 18 | 10 10 10 10 | 180 180 180 180 | 0,2 2,0 8,0 46,2 |
5 Поиск документов | КС ДС УАТС Центр служб | 64К 64К 64К 64К | 200 200 200 200 | 0,25 0,25 0,25 0,25 | 300 300 300 300 | 0,6 3,0 6,0 39,6 |
6 Передача данных | ДС УАТС | 64К 64К | 200 200 | 0,04 0,04 | 30 30 | 24,0 72,0 |