Федеральное государственное учреждение науки «Государственный научный центр прикладной микробиологии и биотехнологии»

Вид материалаАвтореферат

Содержание


Научный консультант
Официальные оппоненты
Ведущая организация
Общая характеристика работы
Цель исследования
Задачи исследования
Научная новизна
Практическая значимость
Личный вклад соискателя
Апробация работы
Структура и объем диссертации
Место выполнения работы
Содержание работы
Результаты исследований
E.coli и B. thuringiensis
Глава 2 Биосенсоры
2.1 Бесконтактное определение микроорганизмов
2.2 Биосенсор для определения глюкозы
2.3 Разработка бисенсорной системы узнавания на основе бактериальных клеток и их фрагментов с помощью криоиммобилизации
2.4 Биосенсоры на основе ЦПМ
...
Полное содержание
Подобный материал:
  1   2   3   4


ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ НАУКИ


«Государственный научный центр прикладной

микробиологии и биотехнологии»

ФГУН ГНЦ ПМБ


ИГНАТОВ СЕРГЕЙ ГЕОРГИЕВИЧ


РАЗРАБОТКА И ПРИМЕНЕНИЕ СОВРЕМЕННЫХ МЕТОДОВ ИЗУЧЕНИЯ И ИДЕНТИФИКАЦИИ МИКРООРГАНИЗМОВ С

ИСПОЛЬЗОВАНИЕМ БИОНАНОТЕХНОЛОГИЧЕСКИХ

ПОДХОДОВ


03.02.03 – микробиология


АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора биологических наук


Оболенск – 2010

Работа выполнена в Федеральном государственном учреждении науки «Государственный научный центр прикладной микробиологии и биотехнологии» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.


Научный консультант:




доктор медицинских наук, профессор

Дятлов Иван Алексеевич




Официальные оппоненты:




член-корреспондент РАН,

доктор биологических наук, профессор


Гальченко Валерий Федорович

доктор ветеринарных наук, профессор

Светоч Эдуард Арсеньевич

доктор биологических наук

Коломбет Любовь Васильевна


Ведущая организация:

Московский государственный университет им. М.В. Ломоносова, Биологический факультет


Защита диссертации состоится 24 марта 2011 г. в 13-00 часов на заседании диссертационного совета Д 350.002.01 при ФГУН «Государственный научный центр прикладной микробиологии и биотехнологии» по адресу: 142279, Оболенск Серпуховского района Московской области.


С диссертацией можно ознакомиться в библиотеке ФГУН «Государственный научный центр прикладной микробиологии и биотехнологии»


Автореферат разослан «___» декабря 2010 г.


Отзывы в двух экземплярах, заверенные печатью, просим отправлять по адресу:

142279, Оболенск Серпуховского района Московской области, ФГУН ГНЦ прикладной микробиологии и биотехнологии, ученому секретарю совета

Н.К. Фурсовой. Факс 8(4967) 36-00-10, e-mail: fursova@obolensk.org


Ученый секретарь

диссертационного совета,

кандидат биологических наук Н.К. Фурсова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ


Актуальность темы


Разработка новых методов анализа в микробиологии имеет большое значение для развития науки и применения ее результатов в различных отраслях народного хозяйства. Одним из наиболее востребованных направлений в микробиологии является разработка быстрых и чувствительных методов изучения и идентификации бактерий на основе бионанотехнологий.

В настоящее время разнообразный анализ бактериальных клеток имеет большое значение в биотехнологии и медицине при создании биопрепаратов, оптимизации микробиологического синтеза продуктов и других биотехнологических процессов, а также при разработке новых методов контроля и диагностики. Наличие между клетками и измерительным прибором промежуточного звена в виде поддерживающей среды обуславливает ряд недостатков этих методов: инерционность процесса измерений и усреднение измеряемых параметров. Поэтому электрооптический метод анализа, основанный на исследовании клеток как электрофизических объектов со слоистой структурой и измерении поляризационных характеристик клеточных структур, представляет собой новый подход к оценке прижизненных физиологических параметров клеток и их гетерогенности (Guliy et al., 2007). Различие электрических свойств среды культивирования (поддерживающей среды) и бактериальных клеток приводит к появлению индуцибельных зарядов при наличии поля. Взаимодействие индуцированных зарядов с электрическим полем является причиной возникновения вращательного момента, задающим ориентацию клеткам. Изменение ориентации бактериальных клеток приводит к изменению оптических свойств суспензии. Оптическая плотность суспензии может изменяться на 1-2%, однако этого достаточно для электрооптического анализа бактериальных клеток (Bunin and Angersbach, 2008). Этот метод измерений является прижизненным, он не использует дополнительных меток и не вызывает изменений в исследуемом объекте. Преимуществом данного метода является то, что влияние среды на точность измерения поляризационных параметров является незначительным и предсказуемым. Воздействие на бактериальные клетки измерительной процедуры также незначительно, и при этом микроорганизмы сохраняют свою жизнеспособность. С помощью электрооптического метода возможно определить количество и жизнеспособность бактерий. Метод является оперативным, причем процесс измерений может быть полностью автоматизирован.

Применение электрооптического метода для оценки состояния микроорганизмов в ходе технологического процесса и для анализа взаимодействия бактерий со специфическими антителами и фагами является актуальной и будет раскрыта в данной работе

Классические методы определения бактерий, основанные на культивировании микроорганизмов с последующим микробиологическим и биохимическим анализом, являются трудоемкой и длительной процедурой с использованием дорогостоящего оборудования. Биосенсоры - аналитически чувствительная и недорогая альтернатива стандартным методам, применяемым сегодня для идентификации бактерий (Deisingh and Thompson, 2002). Они представляют собой аналитические приборы для селективного определения веществ и организмов, в которых используется комбинация биологической системы узнавания и физического преобразователя. Увеличение числа анализируемых образцов, требующих проверки и контроля, и потребность в высокой чувствительности, скорости и точности аналитических измерений стимулировали значительный интерес к развитию биосенсоров в качестве мощной и недорогой альтернативы по отношению к стандартным химическим и энзимологическим методам, используемым на сегодняшний день. Вместе с тем, несмотря на применение биосенсоров на основе бактериальных клеток (Buchinger et al., 2010), практически нет данных по использованию клеточных фрагментов или субклеточных структур для повышения чувствительности и специфичности измерений субстратов. Отсутствуют также литературные данные и по использованию простых систем «искусственного носа» и систем на основе оптоволоконных пучков для идентификации бактерий. Перспективным направлением является разработка биосенсора для анализа антиоксидантной активности веществ с последующим изучением их влияния на защитные функции макроорганизма.

Бионанотехнология – современная биологическая наука, оперирующая наноразмерными объектами. Возможности получения нанообъектов и способность анализировать их качественно изменяют уже существующие подходы в исследованиях. Сканирующая зондовая микроскопия (СЗМ) получила такое название благодаря ключевому элементу, обязательно присутствующему во всех её модификациях – зонду (Cuenat, 2010). Микроскопический зонд двигается, как правило, построчно вдоль поверхности исследуемого образца, взаимодействуя с ним таким образом, что становится возможным детектировать количественную характеристику этого взаимодействия, которая, в конечном счёте, и несёт информацию о свойствах объекта. Атомно-силовая микроскопия (АСМ) принадлежит к семейству проксимальной зондовой микроскопии для анализа поверхности и ее свойств на атомно-молекулярном уровне. В течение последних десятилетий достигнут большой прогресс в развитии АСМ как инструмента изучения нанообъектов в микробиологии (Dufrene 2002, Dufrene et al., 2009). С помощью АСМ можно получить трехмерное изображение поверхностных ультраструктур на молекулярном уровне в реальном времени и при физиологических условиях путем анализа взаимодействия между анализируемой поверхностью и специальным наконечником – кантилевером. Однако все исследования с применением АСМ в основном сводились лишь к наноразмерному анализу бактериальной поверхности. До проведения настоящей работы не была осуществлена специфическая иммобилизация вирусов и бактериальных клеток и/или их нанофрагментов для анализа и идентификации бактерий.

Важным аспектом бионанотехнологии является определение бактерицидной активности наносоединений (Nel et al., 2006). Следует учитывать, что наряду с этим, важна также их роль в функционировании макрофагов при фагоцитозе патогенов.

Бионатехнологии открывают новые перспективы для значительного увеличения чувствительности анализа и идентификации микроорганизмов. Результаты работы очень важны для микробиологии, поскольку существенно расширяют и дополняют представления о методах идентификации прокариот и вносят существенный вклад в понимание процессов анализа бактериального мира.

Цель исследования

Основной целью работы является разработка и применение новых высокоэффективных методов изучения и идентификации бактерий на основе элетрооптических, биосенсорных и бионанотехнологических подходов.

Задачи исследования
  1. Разработка электрооптического метода для анализа и контроля физиологического состояния бактерий и их выживаемости в ходе биотехнологических процессов.

2. Выявление электрооптических изменений микробиологических систем, которые могут служить удобным инструментом идентификации микроорганизмов при анализе взаимодействия бактерий со специфическими антигенами и фагами.

3. Разработка биосенсоров с применением системы искусственного носа на основе высокоплотных оптоволоконных пучков для бесконтактной идентификации микроорганизмов.

4. Изучение возможности использования глюкозного биосенсора для контроля синтеза авермиктина.

5. Разработка биосенсоров на основе бактериальных клеток или их фрагментов для определения глюкозы, лактата и определения концентрации бактерий.

6. Разработка биосенсора для определения антиоксидантной активности веществ.

7. Определение наличия микроорганизмов по анализу летучих компонентов бактериальной культуры. Изучение возможности использования простой модификации метода спектрофотометрического анализа для быстрого выявления присутствия микроорганизмов либо по выделению ими летучих компонентов, либо по их поглощению из окружающей среды.

8. Получение аффинных поверхностей и их анализ для использования бионанотехнологического подхода на основе атомно-силовой микроскопии для высокоспецифичной идентификации микроорганизмов.

9. Изучение токсического действия наносоединений на микроорганизмы.

Научная новизна

Разработан электрооптический метод диагностики физиологического состояния бактериальных клеток в процессе производства биологических препаратов и идентификации бактерий.

Впервые предложено использовать цитоплазматические мембраны бактерий для конструирования новых биосенсоров для определения лактата и оценки бактериальной обсемененности свежего коровьего молока. Использованы новые подходы для определения антиоксидантной активности веществ и их роли в ходе инфекционного процесса. Разработан новый простой метод определения бактерий по анализу органических летучих компонентов.

Впервые разработана система специфической визуализации прокариот с помощью АСМ. Предложены методы оценки бактерицидной активности наносоединений.

Практическая значимость

Разработан электрооптический метод анализа выживаемости бактериальных клеток и оценки целостности клеточной оболочки в биотехнологических процессах, а также идентификации микроорганизмов (подана заявка на патент). Создана новая система биологического узнавания биосенсора на основе цитоплазматической мембраны бактерий, увеличивающая чувствительность определения лактата по сравнению с биосенсорами на основе бактериальных клеток. Реализована методология специфической визуализации прокариотических клеток и их фрагментов для сверхчувствительной идентификации микроорганизмов с помощью АСМ на основе аффинных поверхностей (Патент России RU 2261279 C1). Разработанные методические рекомендации широко используется Институтом теоретической и экспериментальной физики (г. Москва) в вопросе исследования микроорганизмов с помощью атомно-силовой микроскопии. Разработан метод оценки бактерицидной активности наносоединеий для микроорганизмов и фагоцитарной активности макрофагов (готовится заявка на патент). Результаты работы применяются Национальным исследовательским технологическим университетом «МИСиС» при разработке новых видов нанопокрытий с учетом их бактерицидных свойств и функциональной активности фагоцитов.

Личный вклад соискателя

Соискателю принадлежит решающая роль в выборе направлений исследований, в формулировании проблемы, постановке целей и задач, разработке экспериментальных подходов и обобщении результатов. Соискатель принимал участие во всех этапах исследований. В работах, выполненных в соавторстве, соискатель принимал участие в проведении экспериментальной работы, в обобщении и интерпретации научных результатов, в подготовке научных публикаций, а также выступал с научными докладами.

Апробация работы

Основные положения диссертационной работы были представлены: на Всесоюзной конференции «Липиды биологических мембран» (Ташкент, 1980 г.), на XI научной конференции по итогам НИР ВНИИ ПМ (Оболенск, 1986 г.), на Всесоюзной конференции «Теория и практика электрооптических исследований коллоидных систем» (Велегож, 1990 г.), на международной конференции «Развитие медицинского оборудования» (Подольск 1996 г.), на международном симпозиуме «Стресс и азотный обмен» (Москва, 1996 г.), на международном рабочем совещании НАТО «Быстрые методы анализа биологических материалов в окружающей среде» (Варшава, 1997 г.), на международном рабочем совещании НАТО «Новые направления в развитии биосенсоров» (Киев, 1998 г.), на международной конференции «Биокатализ-98» (Пущино, 1998 г.), на международной конференции «Биокатализ-2000» (Москва, 2000 г.), на Всероссийской конференции «Проблемы медицинской и экологической биотехнологии», (Оболенск, 1999 г.), на международной конференции «Современные проблемы биохимии и биотехнологии бактерий» (Пущино, 2000 г.), на международной конференции «Биосенсоры 2000» (Сан-Диего, США, 2000 г.), на международной конференции «Окись азота: фундаментальные исследования и применение в клинике» (Эриче, Италия, 2001 г.), на международных конференциях «IT + ME» (Гурзуф, 2003 г., 2007 г.), на международной конференции «Канадский биологический коллоквиум» (Москва, 2004 г.), на 5 международном совещании МНТЦ/Корея (Сеул, Корея, 2004 г.), на 37 международном совещании МНТЦ-Япония по наноматериалам (Цукуба, Япония, 2004 г.), на международной конференции «Нанотех» (Бостон, США, 2006 г.), на VII Межгосударственной научно-практической конференции государств-участников СНГ "Чрезвычайные ситуации международного значения в общественном здравоохранении и санитарная охрана территории государств-участников СНГ" (Оболенск, 2006 г.), на IX ежегодном зимнем совещании «Успехи в исследованиях на молекулярном уровне для биологии и нанонауки» (Линц, Австрия, 2007 г.), на Первой Всероссийской Школе-семинаре «Современные достижения бионаноскопии» (Москва, 2007 г.), на Международной конференции «Сенсоры для окружающей среды, здравоохранения и безопасности (Виши, Франция, 2007 г.), на IV международной конференции «НаноБио и другие новые перспективные биотехнологии» (Пущино, 2007 г.), на VI Всероссийской научно-практической конференции с международным участием «Молекулярная диагностика - 2007» (Москва, 2007 г.), на Международном совещании экспертов по разработке лекарств (Москва, 2007 г.), на Международном форуме по нанотехнологиям (Москва, 2008 г), на Международной научно-практической конференции «Нанотехнологии в сельском хозяйстве» (Москва, 2008 г.), на Международной конференции «Евромат-2009» (Глазго, Великобритания, 2009 г.) и на Семинаре «Производство и применение наноматериалов в России: токсикологическое воздействие и нормативные вопросы” (Москва, 2009 г.).

Структура и объем диссертации

Диссертация состоит из введения, обзора литературы, методов исследований, результатов исследований и их обсуждения, заключения, выводов, списка литературы. Диссертация изложена на 229 страницах, содержит 11 таблиц, 88 рисунков. Список литературы включает 223 работы.

Публикации

По теме диссертации опубликовано 58 печатные работы, 23 из которых представлены в рецензируемых журналах, рекомендованных ВАК, издана одна монография, получен один патент.

Место выполнения работы

Работа проводилась в ГНЦ прикладной микробиологии и биотехнологии (Оболенск) в рамках НИР и международных проектов.

Основные защищаемые положения

1. Электрооптический метод анализа бактерий позволяет контролировать физиологическое состояние бактерий и их выживаемость в ходе биотехнологических процессов.

2. Новые биосенсоры на основе системы искусственного носа, ферментов, фагов, бактериальных клеток или их фрагментов увеличивают чувствительность и скорость определения глюкозы, лактата и определения концентрации бактерий в анализируемой системе.

3. Использование бионанотехнологического подхода на основе атомно-силовой микроскопии (АСМ) совместно с получением аффинных поверхностей повышает чувствительность выявления микроорганизмов и их идентификации.

4. Применение АСМ позволяет более нативно анализировать аффинные взаимодействия в микробиологии.

5. Токсичность наноматериалов может оцениваться с помощью микробиологических приемов.


СОДЕРЖАНИЕ РАБОТЫ


Объекты и методы исследований

В работе использовали бактерии Escherichia coli, Micrococcus luteus, Salmonella typhimurium, Salmonella enteritidis, Acetobacter aceti, Mycobacterium tuberculosis, Bacillus brevis, Bacillus subtilis, Bacillus thuringiensis, Pseudomonas aeruginosa, Yersinia pseudotuberculosis, Streptomyces avermitilis и аскомицет Neurospora crassa. Для индукции специфических ферментативных активностей микроорганизмы культивировали на минимальных средах с различными источниками углерода. Мицелий аскомицета выращивали на модифицированной среде Фогеля, содержащей минеральные соли, сахарозу и биотин.

Выделение мембран проводили путем осмотического лизиса сферопластов (Игнатов и др. 1981), полученных после обработки клеток лизоцимом с последующей промывкой центрифугированием при охлаждении. Путем субстратной индукции получали цитоплазматические мембраны (ЦПМ) с заранее заданными ферментативными свойствами. Наличие нативной иммобилизации ферментативных ансамблей в липидном бислое обеспечивает более стабильную и чувствительную систему анализа. Поверхностный заряд ЦПМ изменяли, используя положительно заряженные цетилтриаммоний бромид и полилизин и отрицательно заряженные додецилсульфат натрия и полиаспарагиновую кислоту.

Для проведения криоиммобилизации клетки и мембраны смешивали с заранее приготовленным 10 %-ным раствором поливинилового спирта. Суспензию раскапывали по пластиковой поверхности и помещали в холодильник для формирования криогеля. После 24 ч экспозиции при низкой температуре гранулы иммобилизованных клеток и мембран оттаивали, промывали несколько раз фосфатным буфером (рН 7,4) и хранили в нем. Приготовленные заранее навески иммобилизованных биокатализаторов использовали для детекции соответствующих активностей.

Для размножения и титрования фагов использовали полужидкий L-агар с 0,4 %-ной глюкозой. Для экспериментов использовали заранее размноженные фаги в концентрации – 1010–1011 частиц/мл.

Исследования антиоксидантной активности соединений проводили в электрохимической ячейке, имеющей трехэлектродную конфигурацию. Ячейка объемом 1мл включала Ag/AgCl/ 1M KCl электрод сравнения и Pt обратный (рабочий) электрод. Циклическую вольтаметрию осуществляли с использованием системы "Автолаб". Для измерения антиоксидантной активности модифицированный золотой электрод поляризовали при +150мВ по отношению к Ag/AgCl. В качестве потенциостата использовали «Биоанализатор» фирмы Kreijci Engineering (Чехия).

При определении лактата для приготовления чувствительной к кислороду волоконно-оптической системы готовили тонкую силановую пленку с чувствительным к кислороду флуоресцентным красителем, рутений дифенилфенантролином, которую механически крепили на конце оптического волокна. Пленку готовили путем приготовления фотополимеризующего раствора, содержащего мономер силоксана, раствора красителя и индуктора на поверхности чашки. При помощи УФ лампы индуцировали полимеризацию раствора и механическое включение красителя в полимер. Полимерную пленку помещали в раствор дистиллированной воды и хранили в темноте перед использованием. На поверхность этого чувствительного к кислороду слоя помещали препарат ЦПМ, адсорбированный на целлюлозном диске. Всю конструкцию крепили на оптическое волокно нейлоновой сеточкой с помощью резинового кольца.

АСМ-измерения проводили на атомно-силовом микроскопе Nanoscope IIIa (Digital Instruments, США) в режимах постоянного и прерывистого контакта. При измерениях в контактном режиме сканирования использовали коммерческие кантилеверы из нитрида кремния (Si3N4) с жёсткостью 0,06, 0,32, 0,58 и 0,12 Н/м (в зависимости от объекта). Для измерений в режиме прерывистого контакта на воздухе использовали коммерческие кантилеверы из кремния с номинальной жесткостью 42 Н/м. Резонансная частота сканирования лежала в диапазоне 280-310 кГц. Измерения в жидкости проводили с использованием жидкостной ячейки (Digital Instruments, США) для режима прерывистого контакта, применяя коммерческие кантилеверы из нитрида кремния жесткостью 0,58 Н/м, при частоте сканирования 8-10 кГц.

Мышиные перитонеальные макрофаги получали путем инъекции стерильного раствора NaCl (0,9 %) в перитонеальную область мышей. После абдоминального массажа собирали перитонеальную жидкость, которую помещали на покровное стекло в присутствии среды 199 с 10 %-ной эмбриональной телячьей сывороткой в стерильной чашке Петри с нанообразцами. Затем добавляли 100 мкл бактериальной суспензии (106 клеток/мл) и культивировали 2 час при 37 °С. После инкубации монослой макрофагальных клеток на покровном стекле фиксировали этанолом и окрашивали по Романовскому. Изменения бактерицидной активности макрофагов изучали с помощью светового микроскопа Olympus BX41.


РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Глава 1 Электрооптические методы исследования

На примере клеток E. coli и B. thuringiensis показана эффективная возможность оценки жизнеспособности бактерий на основных этапах биотехнологического производства биопрепаратов - этапах ферментации, концентрирования и сушки. На получение и обработку электрооптических данных уходит не более 20 мин. При определении интактных клеток учитывался тот факт, что в интервале 7,5 ≤ lgfo ≤ 7,8 (где fo частота задаваемого поля) электрооптический сигнал практически равен нулю. Оценку инактивирующего воздействия оценивали (в %) путем сравнения величины электрооптического эффекта (ЭОЭ) до и после воздействия в выбранном нами интервале частоты электрического поля. Электрооптические результаты сравнивали с результатами, полученными путем высева бактериальных клеток на твердые питательные среды, с последующим подсчетом колониеобразующих единиц (КОЕ). Как видно из табл. 1, электрооптический метод позволяет аккуратно и быстро оценить жизнеспособность микроорганизмов после определенного экстремального воздействия.

Таблица 1 - Изменение ЭОЭ и жизнеспособности клеток E.coli и B. thuringiensis на этапах ферментации, концентрирование и сушки

Биотехнологический этап

E. coli

B. thuringiensis

Выживаемость клеток, %

ЭОЭ, %

Выживаемость клеток, %

ЭОЭ, %

Инокулят

100

100

100

100

Ферментация

80±8

78±8

82±8

80±8

Концентрирование

67±8

65±8

78±8

77±8

Сушка

13±7

9±7

40±7

39±7