Днк наномеханические роботы и вычислительные устройства

Вид материалаДокументы
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   15

Литература

  1. Adleman L.M. Molecular computation of solutions to combinatorial problems // Science. 1994. V.266, 1021-1024.
  2. Benenson Y., Paz-Elizur T., Adar R., Keinan E., Livneh Z., Shapiro E. Programmable and autonomous computing machine made of biomolecules // Nature. 2001. V.414. P.430–434.
  3. Benenson Y., Gil B., Ben-Dor U., Adar R., Shapiro E. An autonomous molecular computer for logical control of gene expression // Nature. 2004. V.429. P.423-442.
  4. Benenson Y., Adar R., Paz-Elizur T., Keinan E., Livneh Z., Shapiro E. DNA molecule provides a computing machine with both data and fuel // Proc. Natl Acad. Sci. USA. 2003. V.100. P.2191–2196.
  5. .net/htmls/dnacomputer/index.php.
  6. Faulhammer D., Cukras A.R., Lipton R.J., Landweber L.F. Molecular computation: RNA solution to chess problems // Proc. Natl Acad. Sci. USA. 2000. V.97. P.1385-1389.
  7. Landweber L.F., Lipton R.J., Rabin M.O. DNA computations: A potential “Killer App”? // H.Rubin and D.H.Wood, editors. DNA Based Computers III: DIMACS Workshop, June 23-27, 1997. University of Pennsylvania, Providence, Rhode Island, 1997. P.161-172.
  8. Lipton R.J. DNA solution of hard computational problem // Science. 1995. V.268. P.542-545.
  9. Faulhammer D., Cukras A.R., Lipton R.J., Landweber L.F. When the knight falls: On constructing an RNA computer // E.Winfree, D.K.Gifford, editors. Proc. 5th DIMACS Workshop on DNA Based Computers held at the Massachusetts Institute of Technology, Cambridge, MA, 1999. DIMACS: Series in Discrete Math. and Theoretical Computer Sci., Providence, Rhode Island, 2000. P.1-8.
  10. Liu Q., Wang L., Frutos A.G., Condon A.E., Corn R.M., Smith L.M. DNA computing on surfaces // Nature. 2000. V.403. P.175-179.
  11. Mao C., LaBean T.H., Reif J.H., Seeman N.C. Logical Computation Using Algorithmic Self-Assembly of DNA Triple Crossover Molecules // Nature. 2000. V.407. P.493-496.
  12. Ouyang Q., Kaplan P.D., Liu S., Libchaber A. DNA solution of the maximal clique problem // Science. 1997. V.278. P.446-449.
  13. Reif J.H. Parallel Biomolecular Computation: Models and Simulations // Proceedings: 7th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA'95) Santa Barbara, CA, July 1995. P.213-223.
  14. Reif J.H. Local Parallel Biomolecular Computation // Proc. DNA-Based Computers, III: University of Pennsylvania, June 23-26, 1997. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, H. Rubin and D. H. Wood, editors. American Mathematical Society, Providence, RI, 1999. P.217-254.
  15. Reif J.H. Paradigms for Biomolecular Computation // First International Conference on Unconventional Models of Computation, Auckland, New Zealand, January 1998. Unconventional Models of Computation, edited by C.S. Calude, J. Casti, and M.J. Dinneen, Springer-Verlag, New York, January 1998. P.72-93.
  16. Gehani A., Reif J.H. Micro Flow Bio-Molecular Computation // Journal of Biological and Informational Processing Sciences. 1999. V.52. N1-3. P.197-216.
  17. Rothemund P.W.K. A DNA and restriction enzyme implementation of Turing machines // R.J.Lipton and E.B.Baum, editors. DNA Based Computers: Proceedings of the DIMACS Workshop, April 4, 1995, Princeton University, Providence, Rhode Island, 1996. P.75-119.
  18. Ruben A.J., Landweber L.F. The past, present and future of molecular computing // Nature Rev. Mol. Cell. Biol. 2000. V.1. P.69-72.
  19. Smith W.D. DNA computers in vitro and in vivo // R.J.Lipton and E.B.Baum, editors. DNA Based Computers: Proceedings of the DIMACS Workshop, April 4, 1995, Princeton University, Providence, Rhode Island, 1996. P.121-185.
  20. Winfree E. On the computational power of DNA annealing and ligation // R.J.Lipton and E.B.Baum, editors. DNA Based Computers: Proceedings of the DIMACS Workshop, April 4, 1995, Princeton University, Providence, Rhode Island, 1996. P.199-221.
  21. Amos M. DNA computation. PhD Thesis, Univ. of Warwick, Dept. of Computer Sci., 1997.
  22. Amos M. Theoretical and experimental DNA computation // Bull. EATCS. 1999. V.67. P.125-138.
  23. Amos M. Theoretical and experimental DNA computation. Berlin, Springer, 2004.
  24. Amos M. et al. Practical implementation of DNA computations // C.S.Calude, J.Casti, M.J.Dinneen, editors. Unconventional Models of Computation. Berlin, Springer, 1998. P.1-18.
  25. Amos M., Paun G., Rozenberg G., Salomaa A. Topics in the theory of DNA computing // Theoretical Computer Sci. 2002. V.287. P.3-38.
  26. Paun G. Membrane computing: Main ideas, basic results, applications // Molecular Computational Models: Unconventional Approaches (M. Gheorghe, ed.), Idea Group Publ., London, 2004. P.1-31.
  27. Ibarra O.H., Paun G. Membrane computing: A general view // Annals of European Academy of Sciences, 2008.
  28. Braich R.S. et al. Solution of a satisfiability problem on a gel-based DNA computer // A.Condon, G.Rosenberg, editors. DNA computing, 6th Intern. Workshop on DNA Based Computers, Leiden, 2000, LNCS 2054. Berlin, Springer, 2001. P.27-42.
  29. Guarnieri F., Fliss M., Bancroft C. Making DNA add // Science. 1996. V.273. P.220-223.
  30. Khodor J., Gifford D.K. Design and implementation of computational systems based on programmed mutagenesis // BioSystems. 1999. V.52. P.93-97.
  31. Khodor J., Gifford D.K. Programmed mutagenesis is a universal model of computation // N.Jonoska, N.C.Seeman, editors. 7th Intern. Workshop on DNA Based Computers, Tampa, FL, 2001, LNCS 2340. Berlin, Springer, 2002, P.300-37.
  32. Leete T.H., Klein J.P., Rubin H. Bit operations using a DNA template // H.Rubin and D.H.Wood, editors. DNA Based Computers III: DIMACS Workshop, June 23-27, 1997. University of Pennsylvania, Providence, Rhode Island, 1997. P.159-171.
  33. Morimoto N., Arita M., Suyama A. Solid phase DNA solution to the Hamiltonian path problem // H.Rubin and D.H.Wood, editors. DNA Based Computers III: DIMACS Workshop, June 23-27, 1997. University of Pennsylvania, Providence, Rhode Island, 1997. P.193-206.
  34. Wood D.H., et al. In vitro selection for a OneMax DNA evolutionary computation // E.Winfree, D.K.Gifford, editors. Proc. 5th DIMACS Workshop on DNA Based Computers held at the Massachusetts Institute of Technology, Cambridge, MA, 1999. DIMACS: Series in Discrete Math. and Theoretical Computer Sci., Providence, Rhode Island, 2000. P.23-38.
  35. Wood D.H., et al. DNA starts to learn poker // N.Jonoska, N.C.Seeman, editors. 7th Intern. Workshop on DNA Based Computers, Tampa, FL, 2001, LNCS 2340. Berlin, Springer, 2002, P.92-103.
  36. Yoshida H., Suyama A. Solution to 3-SAT by breadth first search // H.Rubin and D.H.Wood, editors. DNA Based Computers III: DIMACS Workshop, June 23-27, 1997. University of Pennsylvania, Providence, Rhode Island, 1997. P.9-22.
  37. Seeman N.C. Nucleic Acid Junctions and Lattices // Journal of Theoretical Biology. 1982. V.99. P.237-247.
  38. LaBen T.H., Yan H., Kopatsch J., Liu F., Winfree E., Reif J.H, Seeman N.C. The Construction of DNA Triple Crossover Molecules // Journal of the American Chemical Society. 2000. V.122. P.1848-1860.
  39. Yan H., LaBean T.H., Feng L., Reif J.H. Directed Nucleation Assembly of Barcode Patterned DNA Lattices // Proceedings of the National Academy of Science. 2003. V.100. N14. P.8103-8108.
  40. Yan H., Park S.H., Finkelstein G., Reif J.H., LaBean T.H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires // Science. 2003. V.301. P.1882-1884.
  41. Li H., Park S.H., Reif J.H., LaBean T. H., Yan H. J DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays // Journal of American Chemistry Society. 2004. V.126. N2. P.418-419.
  42. Park S.H., Yan H., Reif J.H., LaBean T.H., Finkelstein G. Electronic nanostructures templated on self-assembled DNA scaffolds // Nanotechnology. 2004. V.15. P.525–527.
  43. Wilhelm P., Rothemund P.W. A DNA and restriction enzyme implementation of Turing machines // DIMACS Series in Discrete Mathematics and Theoretical Computer Science. 1995. P.75-119.
  44. Stojanovic M.N., Stefanovic D. A deoxyribozyme-based Molecular Automaton // Nature Biotechnology. 2003. V.21. N9. P.1069.
  45. Stojanovic M.N., Stefanovic D. Deoxyribozyme-based Half-Adder // J. Am. Chem. Soc. 2003. V.125. N22. P.6673.
  46. Stojanovic M. N., Mitchel T.H.E., Stefanovic D. Deoxyribozyme-based Logic Gates // J. Am. Chem. Soc. 2002. V.124. N14. P.3555-3561.
  47. Stojanovic M.N., de Prada P., Landry D.W. Homogeneous assays based on deoxyribozyme catalysis // Nucleic Acids Res. 2000. V.28. N15. P.2915.
  48. Yin P., Turberfield A.J., Reif J.H. Design of an Autonomous DNA Nanomechanical Device Capable of Universal Computation and Universal Translational Motion // Tenth International Meeting on DNA Based Computers. LNCS 3384, Springer-Verlag, New York, 2005. P.426-444.
  49. Sakamoto K. et al. State transitions by molecules // Biosystems. 1999. V.52. P.81–91.
  50. Sakamoto K. et al. Molecular computation by DNA hairpin formation // Science. 2000. V.288. P.1223–1226.
  51. Yin P., Turberfield A., Sahu S., Reif J. Design of an autonomous DNA nano-mechanical device capable of universal computation and universal translational motion // Tenth International Meeting on DNA Computing. LNCS. 2005. V.3384. P.426–444.
  52. Reif J.H., Sahu S. Autonomous Programmable DNA Nanorobotic Devices Using DNAzymes // 13th International Meeting on DNA Computing (DNA 13), Memphis, Tennessee, June 4-8, 2007. DNA Computing: DNA13 (edited by Max Garzon and Hao Yan), Springer-Verlag LNCS 4848. Springer, Berlin – Heidelberg, 2008. P.66-78.
  53. Ehrenfeucht A., Harju T., Petre I., Prescott D.M., Rozenberg G., Landweber L., Kari L. Computation in Living Cells: Gene Assembly in Ciliates . Berlin, Springer, 2004.
  54. Паун Г., Розенберг Г., Саломаа А. ДНК-компьютер. Новая парадигма вычислений. М.: Мир, 2004.
  55. Adar R., Benenson Y., Linshiz G., Rosner A., Tishby N., Shapiro E. Stochastic computing with biomolecular automata // Proc. Natl Acad. Sci. USA. 2004. V.101. P.9960-9965.
  56. Benenson Y., Shapiro, E. Molecular Computing Machines // Dekker. Encyclopedia of Nanoscience and Nanotechnology, Marcel Dekker, 2004. P.2043 – 2055.
  57. Wang Y., Muller J.E., Kemper B., Seeman N.C. The assembly and characterization of 5-arm and 6-arm DNA branched junctions // Biochemistry. 1991. V.30. P.5667-5674.
  58. Chen J., Seeman N.C. Synthesis from DNA of a molecule with the connectivity of a cube // Nature. 1991. V.350. P.631-633.
  59. Zhang Y., Seeman N.C. The construction of a DNA truncated octahedron // J. Am. Chem. Soc. 1994. V.116. P.1661-1669.
  60. Qiu H., Dewan J.C., Seeman N.C. A DNA Decamer with a Sticky End: The crystal structure of d-CGACGATCGT // J. Mol. Biol. 1997. V.267. P.881-898.
  61. Caruthers M.H. Gene synthesis machines // Science. 1985. V.230. P.281-285.
  62. Lashkari D.A., Hunicke-Smith S.P., Norgren R.M., Davis R.W., Brennan T. An automated multiplex oligonucleotide synthesizer: Development of high-throughput, low-cost DNA synthesis // Proc. Nat. Acad. Sci. (USA). 1995. V.92. P.7912-7915.
  63. Hagerman P.J. Flexibility of DNA // Ann. Rev. Biophys. & Biophys. Chem. 1988. V.17. P.265-286.
  64. Seeman N.C., Rosenberg J.M., Rich A. Sequence specific recognition of double helical nucleic acids by proteins // Proc. Nat. Acad. Sci. (USA). 1976. V.73. P.804-808.
  65. Ma R.-I., Kallenbach N.R., Sheardy R.D., Petrillo M.L., Seeman N.C. Three arm nucleic acid junctions are flexible // Nucl. Acids Res. 1986. V.14. P.9745-9753.
  66. Petrillo M.L., Newton C.J., Cunningham R.P., Ma R.-I., Kallenbach N.R., Seeman, N.C. Ligation and flexibility of four-arm DNA junctions // Biopolymers. 1988. V.27. P.1337-1352.
  67. Kappraff J. Connections. McGraw-Hill, New York, 1990.
  68. Chen J.H., Kallenbach N.R., Seeman N.C. A specific quadrilateral synthesized from DNA branched junctions // J. Am. Chem. Soc. 1989. V.111. P.6402-6407.
  69. Zhang Y., Seeman N.C. A solid-support methodology for the construction of geometrical objects from DNA // J. Am. Chem. Soc. 1992. V.114. P.2656-2663.
  70. Chen J., Seeman N.C. The electrophoretic properties of a DNA cube and its sub-structure catenanes // Electrophoresis. 1991. V.12. P.607-611.
  71. Seeman N.C. Design of single-stranded nucleic acid knots // Mol. Engineering. 1992. V.2. P.297-307.
  72. Rich A., Nordheim A., Wang A.H.-J. The chemistry and biology of left-handed Z-DNA // Ann. Rev. Biochem. 1984. V.53. P.791-846.
  73. Du S.M., Stollar B.D., Seeman N.C. A synthetic DNA molecule in three knotted topologies // J.Am.Chem.Soc. 1995. V.117. P.1194-1200.
  74. Du S.M., Wang H., Tse-Dinh Y.-C., Seeman N.C. Topological transformations of synthetic DNA knots // Biochemistry. 1995. V.34. P.673-682.
  75. Wang H., Di Gate R.J., Seeman N.C. An RNA topoisomerase // Proc. Nat. Acad. Sci. (USA). 1996. V.93. P.9477-9482.
  76. Mao C., Sun W., Seeman N.C. Assembly of Borromean rings from DNA // Nature. 1997. V.386. P.137-138.
  77. Liang C., Mislow K. On Borromean links // J. Math. Chem. 1994. V.16. P.27-35.
  78. Du S.M., Seeman N.C. The construction of a trefoil knot from a DNA branched junction motif // Biopolymers. 1994. V.34. P.31-37.
  79. Bork P., Eisenberg D. Deriving biological knowledge from genomic sequences // Curr. Opin. Struct. Biol. 1998. V.8. P.331-332.
  80. Bork P., Ouzounis C., Sander C. From genome sequences to protein function // Curr. Opin. Struct. Biol. 1994. V.4. P.393-403.
  81. Cooper D.L., Isola N.R., Stevenson K., Baptist E.W. Members of the ALDH gene family are lens and corneal Crystallins // Advan. Exp. Med. Biol. 1993. V.328. P.169-179.
  82. Koonin E.V., Tatusov R.I. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search // J. Mol. Biol. 1994. V.244. P.125-132.
  83. Seery L.T., Nestor P.V., FitzGerald G.A. Molecular evolution of the aldo-keto reductase gene superfamily // J. Mol. Evol. 1998. V.46. P.139-146.
  84. Bork P., Sander C., Valencia A. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases // Protein Sci. 1993. V.2. P.31-40.
  85. Chen L., DeVries A.L., ChengC.H. Conversent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod // Proc. Natl. Acad. Sci. USA. 1997. V.94. P.3817-3822.
  86. Doolittle R.F. Convergent evolution: the need to be explicit // Trends Biochem. Sci. 1994. V.19. P.15-18.
  87. Ibba M., Bono J.L., Rosa P.A., Soll D. Archaeal-type Lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi // Proc. Natl. Acad. Sci. USA. 1997. V.94. P.14383-14388.
  88. Ibba M., Morgan S., Curnow A.W., Pridmore D.R., Vothknecht U.C., Gardner W., Lin W., Woese C.R., Soll D. A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases // Science. 1997. V.278. P.1119-1122.
  89. George S.E., Simokat K., Hardin I., Chisholm A.D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelian morphogenesis in C.elegans // Cell. 1998. V.92. P.633-643.
  90. Kimura K.D., Tissenbaum H.A., Liu Y., Ruvkun G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans // Science. 1997. V.277. P.942-946.
  91. Nicholls A., Sharp K., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons // Proteins. 1991. V.11. P.281-296.
  92. Sauder J.M., Dunbrack R.L. Jr. Genomic fold assignment and rational modeling of proteins of biological interest.
  93. Seeman N.C. Nucleic acid junctions and lattices // J. Theor. Biol. 1982. V.99. P.237-247.
  94. Robinson B.H., Seeman N.C. Design of a biochip // Prot. Eng. 1987. V.1. P.295-300.
  95. Liu B., Leontis N.B., Seeman N.C. Bulged 3-arm DNA branched junctions as components for nanoconstruction // Nanobiol. 1995. V.3. P.177-188.
  96. Qi J., Li X., Yang X., Seeman N.C. The ligation of triangles built from bulged three-arm DNA branched junctions // J. Am. Chem. Soc. 1996. V.118. P.6121-6130.
  97. Fu T.-J., Seeman N.C. DNA double crossover structures // Biochem. 1993. V.32. P.3211-3220.
  98. Li X., Yang X., Qi J., Seeman N.C. Antiparallel DNA double crossover molecules as components for nanoconstruction // J. Am. Chem. Soc. 1996. V.118. P.6131-6140.
  99. Schwacha A., Kleckner N. Identification of double Holliday junctions as intermediates in meiotic recombination // Cell. 1995. V.83. P.783-791.
  100. Fu T.-J., Kemper B., Seeman N.C. Endonuclease VII cleavage of DNA double crossover molecules // Biochem. 1994. V.33. P.3896-3905.
  101. Fu T.-J., Tse-Dinh Y.-C., Seeman N.C. Holliday junction crossover topology // J. Mol. Biol. 1994. V.236. P.91-105.
  102. Zhang S., Seeman N.C. Symmetric Holliday junction crossover isomers // J. Mol. Biol. 1994. V.238. P.658-668.
  103. Li X., Wang H., Seeman N.C. Direct evidence for Holliday junction crossover isomerization // Biochem. 1997. V.36. P.4240-4247.
  104. Zhang S., Fu T.-J., Seeman N.C. Construction of symmetric, immobile DNA branched junctions // Biochem. 1994. V.32. P.8062-8067.
  105. Mao C., LaBean T.H., Reif J.H., Seeman N.C. Logical Computation Using Algorithmic Self-Assembly of DNA Triple-Crossover Molecules // Nature. 2000. V.407. P.493-495.
  106. Park S.H., Pistol C., Ahn S.J., Reif J.H., Lebeck A.R., Dwyer C., LaBean T.H. Finite-size, fully addressable dna tile lattices formed by hierarchical assembly procedures // Angew. Chem. Int. Ed. 2006. V.45. P.735-739.
  107. Rothemund P. Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA origami // Nature. 2005.
  108. Rothemund P. Folding DNA to create nanoscale shapes and patterns // Nature. 2006. V.440. P.297-302.
  109. Shih W.M., Quispe J.D., Joyce G.F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron // Nature. 2004. V.427. P.618-621.
  110. Chen Y., Mao C. Putting a brake on an autonomous DNA nanomotor // J. Am. Chem. Soc. 2004. V.126. P.8626–8627.
  111. Chen Y., Wang M., Mao C.. An autonomous DNA nanomotor powered by a DNA enzyme // Angew. Chem. Int. Ed. 2004. V.43. P.3554–3557.
  112. C.M.J., Andrew K., Lun-Quan S. Optimisation of the 10-23 dnazyme-substrate pairing interactions enhanced rna cleavage activity at purine-cytosine target sites // Nucleic acids research. 2003. V.31. P.2883–2889.
  113. L. J., Zheng W., Kwon A., Lu Y. In vitro selection and charcterization of a highly efficient zn(ii) dependent, rna-cleaving deoxyribozyme // Nucleic acids research. 2000. V.28. P.481–488.
  114. S. S.W., Joyce G. Mechanism and utility of an rna-cleaving dna enzyme // Biochemistry. 1998. V.37. P.13330–13342.
  115. Tian Y., He Y., Chen Y., Yin P., Mao C. Molecular devices - a DNAzyme that walks processively and autonomously along a one-dimensional track // Angew. Chem. Intl. Ed. 2005. V.44. P.4355–4358.
  116. Mayer G., Ackermann D., Kuhn N., Famulok M. Construction of DNA Architectures with RNA Hairpins // Angew. Chem. Int. Ed. 2008. V.47. P.971–973.
  117. Инге-Вечтомов С.Г. Трансляция как способ существования живых систем, или в чем смысл «бессмысленных» кодонов // Соросовский образовательный журнал. 1996. N12. C.2-10.
  118. Овчинников Л.П. Что и как закодировано в мРНК // Соросовский образовательный журнал. 1998. N4. C.10-18.
  119. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes // Nucleic Acids Research. 1998. V.26. P.148-153.
  120. Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya // Proc. Natl. Acad. Sci. USA. 1990. V.87. P.4576-4579.
  121. Holley R.W. Structure of an alanine transfer ribonucleic acid // JAMA. 1965. V.194. P.868-871.
  122. Becerril H.A., Stoltenberg R.M., Monson C.F., Woolley A.T. Ionic Surface Masking for Low Background in Single- and Double-stranded DNA-Templated Silver and Copper Nanorods // J. Mater. Chem. 2004. V.14. P.611-616.
  123. Ford W.E., Harnack O., Yasuda A., Wessels J.M. Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles // Adv. Mater. 2001. V.13. P.1793-1797.
  124. Richter J., Mertig M., Pompe W., Monch I., Schackert H.K. Construction of highly conductive nanowires on a DNA template // Appl. Phys. Lett. 2001. V.78. P.536-538.
  125. Gu Q., Cheng C., Haynie D.T. Cobalt Metallization of DNA: Toward Magnetic Nanowires // Nanotechnology. 2005. V.16. P.1358-1363.
  126. Monson C.F., Woolley A.T. DNA-Templated Construction of Copper Nanowires // Nano Lett. 2003. V.3. P.359-363.
  127. Stoltenberg R.M., Woolley A.T. DNA-Templated Nanowire Fabrication // Biomed. Microdevices. 2004. V.6. P.105-111.
  128. Becerril H.A., Stoltenberg R.M., Wheeler D.R., Davis R.C., Harb J.N., Woolley A.T. DNA-Templated Three-Branched Nanostructures for Nanoelectronic Devices // J. Am. Chem. Soc. 2005. V.127. P.2828-2829.
  129. Coffer J.L., Bigham S.R., Li X., Pinizzotto R.F., Rho Y.G., Pirtle R.M., Pirtle I.L. Dictation of the Shape of Mesoscale Semiconductor Nanoparticle Assemblies by Plasmid DNA // Appl. Phys. Lett. 1996. V.69. P.3851-3853.
  130. Liang H., Angelini T.E., Braun P.V., Wong G.C.L. Roles of Anionic and Cationic Template Components in Biomineralization of CdS Nanorods using Self-Assembled DNA-Membrane Complexes // J. Am. Chem. Soc. 2004. V.126. P.14157-14165.
  131. Nyamjav D., Ivanisevic A. Templates for DNA-Templated Fe3O4 Nanoparticles // Biomaterials. 2005. V.26. P.2749-2757.
  132. Csaki A., Maubach G., Born D., Reichert J., Fritzsche W. DNA-Based Molecular Nanotechnology // Single Mol. 2002. V.3. P.275-280.
  133. Niemeyer C.M. The Developments of Semisynthetic DNA-Protein Conjugates // Trends Biotechnol. 2002. V.20. P.395-401.
  134. Li H., Park S.H., Reif J.H., LaBean T.H., Yan H. DNA-templated Self-Assembly of Protein and Nanoparticle Linear Arrays // J. Am. Chem. Soc. 2004. V.126. P.418-419.
  135. Yan H., Park S.H., Finkelstein G., Reif J.H., LaBean T.H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires // Science. 2003. V.301. P.1882-1884.
  136. Le J.D., Pinto Y., Seeman N.C., Musier-Forsyth K., Taton T.A., Kiehl R.A. DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface // Nano Lett. 2004. V.4. P.2343-2347.
  137. Parak W.J., Gerion D., Zanchet D., Woerz A.S., Pellegrino T., Micheel C., Williams S.C., Seitz M., Bruehl R.E., Bryant Z., Bustamante C., Bertozzi C.R., Alivisatos A.P. Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots // Chem. Mater. 2002. V.14. P.2113-2119.
  138. Zanchet D., Micheel C.M., Parak W.J., Gerion D., Alivisatos A.P. Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates // Nano Lett. 2001. V.1. P.32-35.
  139. Zhang J., Liu Y., Ke Y., Yan H. Periodic Square-Like Gold Nanoparticle Arrays Templated by Self-Assembled 2D DNA Nanogrids on a Surface // Nano Lett. 2006. V.6. P.248-251.
  140. Zheng J., Constantinou P.E., Micheel C., Alivisatos A.P., Kiehl R.A., Seeman N.C. Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs // Nano Lett. 2006. V.6. P.1502-1504.
  141. Harnack O., Ford W.E., Yasuda A., Wessels J.M. Tris(hydroxymethyl)phosphine-Capped Gold Particles Templated by DNA as Nanowire Precursors // Nano Lett. 2002. V.2. P.919-923.
  142. Nyamjav D., Ivanisevic A. Templates for DNA-Templated Fe3O4 Nanoparticles // Biomaterials. 2005. V.26. P.2749-2757.
  143. Tanaka S., Fritzsche W., Sako Y., Yanagida T. Synthesis of Long-Template DNA Using Enzymatic Reaction for Regular Alignment of Au-Nanoparticles // Chem. Lett. 2006. V.35. P.1290-1291.
  144. Csaki A., Garwe F., Steinbrueck A., Maubach G., Festag G., Weise A., Riemann I., Koenig K., Fritzsche W. A Parallel Approach for Subwavelength Molecular Surgery Using Gene-Specific Positioned Metal Nanoparticles as Laser Light Antennas // Nano Lett. 2007. V.7. P.247-253.
  145. Richter J., Mertig M., Pompe W., Monch I., Schackert H.K. Construction of Highly Conductive Nanowires on a DNA Template // Appl. Phys. Lett. 2001. V.78. P.536-538.
  146. Monson C.F., Woolley A.T. DNA-Templated Construction of Copper Nanowires // Nano Lett. 2003. V.3. P.359-363.
  147. Becerril H.A., Stoltenberg R.M., Monson C.F., Woolley A.T. Ionic Surface Masking for Low Background in Single- and Double-Stranded DNA-Templated Silver and Copper Nanorods // J. Mater. Chem. 2004. V.14. P.611-616.
  148. Park S.H., Barish R., Li H., Reif J.H., Finkelstein G., Yan H., LaBean T.H. Three-Helix Bundle DNA Tiles Self-Assemble into 2D Lattice or 1D Templates for Silver Nanowires // Nano Lett. 2005. V.5. P.693-696.
  149. Gu Q., Cheng C., Haynie D.T. Cobalt Metallization of DNA: Toward Magnetic Nanowires // Nanotechnology. 2005. V.16. P.1358-1363.
  150. Coffer J.L., Bigham S.R., Li X., Pinizzotto R.F., Rho Y.G., Pirtle R.M., Pirtle I.L. Dictation of the Shape of Mesoscale Semiconductor Nanoparticle Assemblies by Plasmid DNA // Appl. Phys. Lett. 1996. V.69. P.3851-3853.
  151. Dittmer W.U., Simmel F.C. Chains of Semiconductor Nanoparticles Templated on DNA // Appl. Phys. Lett. 2004. V.85. P.633-635.
  152. Xin H., Woolley A.T. DNA-Templated Nanotube Localization // J. Am. Chem. Soc. 2003. V.125. P.8710-8711.
  153. Xin H., Woolley A.T. High-Yield DNA-Templated Assembly of Surfactant-Wrapped Carbon Nanotubes // Nanotechnology. 2005. V.16. P.2238-2241.
  154. Niemeyer C.M., Adler M., Pignataro B., Lenhert S., Gao S., Chi L., Fuchs H., Blohm D. Self-Assembly of DNA-Streptavidin Nanostructures and Their Use as Reagents in Immuno-PCR // Nucleic Acids Res. 1999. V.27. P.4553-4561.
  155. Yan H., Park S.H., Finkelstein G., Reif J.H., LaBean T.H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires // Science. 2003. V.301. P.1882-1884.
  156. Becerril H.A., Ludtke P., Willardson B.M., Woolley A.T. DNA-Templated Nickel Nanostructures and Protein Assemblies // Langmuir. 2006. V.22. P.10140-10144.
  157. He Y., Tian Y., Ribbe A.E., Mao C. Antibody Nanoarrays with a Pitch of ~20 Nanometers // J. Am. Chem. Soc. 2006. V.128. P.12664-12665.
  158. Richter J. Metallization of DNA // Physica E. 2003. V.16. P.157-173.
  159. Seidel R., Ciacchi L.C., Weigel M., Pompe W., Mertig M. Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template-Controlled Cluster Growth // J. Phys. Chem. B. 2004. V.108. P.10801-10811.
  160. Ongaro A., Griffin F., Beecher P., Nagle L., Iacopino D., Quinn A., Redmond G., Fitzmaurice D. DNA-Templated Assembly of Conducting Gold Nanowires between Gold Electrodes on a Silicon Oxide Substrate // Chem. Mater. 2005. V.17. P.1959-1964.
  161. Lund J., Dong J., Deng Z., Mao C., Parviz B.A. Electrical Conduction in 7 nm Wires Constructed on λ-DNA // Nanotechnology. 2006. V.17. P.2752-2757.
  162. Deng Z., Mao C. Metallic Nanostructures: Molecular Lithography with DNA Nanostructures // Angew. Chem. Int. Ed. Engl. 2004. V.43. P.4068-4070.
  163. Keren K., Bergman R.S., Buchstab E., Sivan U., Braun E. DNA-templated carbon nanotube field-effect transistor // Science. 2003. V.302. P.1380-1382.
  164. Hopkins D.S., Pekker D., Goldbart P.M., Bezryadin A. Quantum interference device made by DNA templating of superconducting nanowires // Science. 2005. P.1762-1765.
  165. Tanaka K., Shionoya M. Synthesis of a novel nucleoside for alternative DNA base pairing through metal complexation // Journal of Organic Chemistry. 1999. P.5002-5003.
  166. Weizman H., Tor Y. 2,2'-bipyridine ligandoside: a novel building block for modifying DNA with intra-duplex metal complexes // Journal of The American Chemical Society. 2001. P.3375-3376.
  167. Aich P., Labiuk S.L., Tari L.W., Delbaere L.J.T., Roesler W.J., Falk K.J., Steer R.P., Lee J.S. M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire // Journal of Molecular Biology. 1999. P.477-485.
  168. Braun E., Eichen Y., Sivan U., Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire // Nature. 1998. V.391. P.775-777.
  169. Keren K., Krueger M., Gilad R., BenYoseph G., Sivan U., Braun E. Sequence specific molecular lithography on single DNA molecules // Science. 2002. V.297. P.72-75.
  170. Keren K., Bergman R.S., Braun E. Patterned DNA metallization by sequence specific localization of a reducing agent // Nano Letters. 2004. V.4. P.323-326.
  171. Richter J., Seidel R., Kirsch R., Mertig M., Pompe W., Plaschke J., Schackert H.K. Nanoscale palladium metallization of DNA // Advanced Materials. 2000. P.507-510.
  172. Torimoto T., Yamashita M., Kuwabata S., Sakata T., Mori H., Yoneyama H. Fabrication of cds nanoparticle chains along DNA double strands // Journal of Physical Chemistry B. 1999. P.8799-8803.
  173. Dittmer W.U., Simmel F.C. Chains of semiconductor nanoparticles templated on DNA // Applied Physics Letters. 2004. V.4. P.3550-3553.
  174. Hazarika P., Ceyhan B., Niemeyer C.M. Reversible Switching of DNA–Gold Nanoparticle Aggregation // Angew. Chem. Int. Ed. 2004. V.43. P.6469 –6471.