Физ величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с к-рыми одно тело действует на поверхность другого (напр
Вид материала | Документы |
- Реферат По Физике, 58.66kb.
- Тема: определение реакций связей при действии на конструкцию произвольной плоской системы, 15.41kb.
- Головной мозг, 139.71kb.
- Работы режущего инструмента, основная нагрузка приходится на его рабочую поверхность,, 335.67kb.
- Головной мозг, с окружающими его оболочками находится в полости мозгового черепа, 437.52kb.
- Представьте себе некоторую поверхность и сидящего на ней муравья. Представили, 409.6kb.
- Лекция №8 Тема: «Продолжение», 81.36kb.
- Твует равновесию, установившемуся под действием силы тяжести, при условии, если, 669.51kb.
- Лабораторная работа метод естественного электрического поля (ЕП), 82.61kb.
- 1. Резьба Резьба поверхность, образованная при винтовом движении плоского контура, 223.58kb.
ДЖОЗЕФСОНА ЭФФЕКТ, протекание сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника (т. н. контакт Джозефсона); предсказан на основе теории сверхпроводимости англ. физиком Б. Джозефсоном (В. Josephson) [1962, Нобелевская премия (1973)], экспериментально обнаружен в 1963. Эл-ны проводимости проходят через диэлектрик (обычно плёнку окиси металла толщиной ~10Å=10-9 м) благодаря туннельному эффекту. Если ток через контакт Джозефсона не превышает определ. значения, наз. критич. током контакта, то падение напряжения на контакте отсутствует (т. н. стационарный Д. э.). Если же через контакт пропускать ток, больший критического, то на контакте возникает падение напряжения, и контакт излучает эл.-магн. волны (нестационарный Д. э.). Излучать эл.-магн. волны может только перем. ток — именно такой ток течёт сквозь контакт Джозефсона при постоянном падении напряжения V на контакте. Частота излучения связана с V соотношением =2eV/h, где е — заряд эл-на. Излучение обусловлено тем, что объединённые в пары эл-ны, создающие сверхпроводящий ток, при переходе через контакт приобретают избыточную по отношению к осн. состоянию сверхпроводника энергию 2eV. Единств. возможность для пары эл-нов вернуться в осн. состояние — это излучить квант эл.-магн. энергии h=2eV. Д. э. указывает на существование в сверхпроводниках электронной упорядоченности — фазовой когерентности: в осн. состоянии все электронные пары (Куперов-
153
ские пары, см. Купера эффект) имеют одинаковую фазу , характеризующую их волновую функцию = ||ei. Контакту Джозефсона соответствует определ. разность фаз *=1-2, где 1 и 2 — значения фазы волн. функции для сверхпроводников, разделённых контактом. Согласно квант. механике, при наличии разности фаз * через контакт должен течь ток, плотность к-рого j=j0sin*. Эксперим. обнаружение этого тока доказывает, что в природе существуют макроскопич. явления, непосредственно определяемые фазой волн. функции.
Аналогичный эффект наблюдается, когда сверхпроводники соединены тонкой перемычкой (мостиком или точечным контактом), а также если между ними находится тонкий слой металла в норм. состоянии или полупроводника. Такие системы вместе с контактами Джозефсона наз. слабосвязанными сверхпроводниками. На основе Д. э. созданы сверхпроводящие интерферометры, содержащие параллельно включённые слабые связи между сверхпроводниками. Результирующий ток, текущий через эти слабые связи, I=I1sin*1+I2sin*2, где 1* и *2 — разности фаз на первом и втором контактах Джозефсона. Происходит своеобразная интерференция сверхпроводящих токов через слабые связи. При этом критич. ток оказывается периодически зависящим от потока внеш. магн. поля (с периодом, равным кванту потока Ф0), что позволяет использовать такое устройство для чрезвычайно точного измерения слабых магн. полей (до 10-18 Тл; такие магнитометры наз. сквидами), малых токов (до 10-10 А) и напряжений (до 10-15 В). Слабосвязанные сверхпроводники могут быть также использованы в кач-ве быстродействующих элементов логич. устройств ЭВМ, параметрич. преобразователей, чувствит. детекторов СВЧ, усилителей и др. электронных приборов.
• Лангенберг Д. Н., С к а л а п и н о Д. Ж., Тейлор Б. Н., Эффекты Джозефсона, пер. с англ., «УФН», 1967, т. 91, в. 2, с. 317; Кулик И. О., Я н с о в И. К., Эффект Джозефсона в сверхпроводящих туннельных структурах, М., 1970; Лихарев К. К., У л ь р и х Б. Т., Системы с джозефсоновскими контактами, М., 1978.
Л. Г. Асламазов.
ДЖОРДЖИ СИСТЕМА ЕДИНИЦ, название, установленное Междунар. электротехн. комиссией (1958) для системы ед. электрич. и магн. величин, в основу к-рой положены четыре ед.: метр, килограмм, секунда и ампер. Названа в честь итал. учёного Дж. Джорджи (G. Giorgi), впервые предложившего эту систему в 1901. Другое наименование этой системы — МКСА система единиц.
ДЖОУЛЬ (Дж, J), единица СИ работы, энергии и кол-ва теплоты. Названа в честь англ. физика Дж. П. Джоуля (J. P. Joule). 1 Дж равен работе силы 1 Н при перемещении точки приложения силы на расстояние 1 м в направлении действия силы. 1 Дж=1Н•м=107 эрг=0,2388 кал.
ДЖОУЛЯ ЗАКОН, закон, согласно к-рому внутр. энергия определ. массы идеального газа не зависит от его объёма, а зависит только от темп-ры. Д. з. следует из представлений кинетич. теории об идеальном газе: вз-ствие между молекулами отсутствует (потенц. энергия вз-ствия равна нулю), поэтому изменение расстояний между ними (изменение объёма) не изменяет внутр. энергии. Назван в честь Дж. П. Джоуля.
ДЖОУЛЯ — ЛЕНЦА ЗАКОН, определяет кол-во теплоты Q, выделяющееся в проводнике с сопротивлением Л за время t при прохождении через него тока I: Q=aI2Rt. Коэфф. пропорциональности а зависит от выбора ед. измерений: если I измеряется в амперах, R—в омах, t — в секундах, то при а=0,239 Q выражается в калориях, а при а=1 — в джоулях. Д.— Л. з. установлен в 1841 Дж. П. Джоулем и подтверждён в 1842 точными опытами Э. X. Ленца.
ДЖОУЛЯ — ТОМСОНА ЭФФЕКТ, изменение темп-ры газа в результате адиабатич. дросселирования — медл. протекания газа под действием пост. перепада давления сквозь дроссель — местное препятствие газовому потоку (напр., пористую перегородку, расположенную на пути потока).
Д.— Т. э. был обнаружен и исследован англ. учёными Дж. П. Джоулем и У. Томсоном (Кельвином) в 1852—62. В опытах Джоуля и Томсона измерялась темп-pa в двух последоват. сечениях непрерывного и стационарного потока газа (до дросселя и за ним). Вследствие значит. трения газа в дросселе (мелкопористой пробке из ваты) скорость газового потока была очень малой и кинетич. энергия потока при дросселировании практически не изменялась. Благодаря низкой теплопроводности стенок трубы и дросселя теплообмен между газом и внеш. средой отсутствовал. При перепаде давления на дросселе р=р1-p2, равном атм. давлению, измеренная разность темп-р T=T2-T1 для воздуха составила -0,25°С (опыт проводился при комнатной темп-ре). Для СО2 и Н2 в тех же условиях T оказалась соотв. равной -1,25 и +0,02°С. Д.— Т. э. принято называть положительным, если газ в процессе дросселирования охлаждается (T<0), и отрицательным, если газ нагревается (T>0).
Согласно молекулярно-кинетич. теории строения в-ва, Д.—Т. э. свидетельствует о наличии в газе сил межмол. вз-ствия (обнаружение этих сил и было целью опытов Джоуля и Томсона). Действительно, при взаимном притяжении молекул внутренняя энергия (U) газа включает как кинетич. энергию молекул, так и потенц. энергию их вз-ствия. Расширение газа в условиях энергетич. изоляции не меняет его внутр. энергии, но приводит к росту потенц. энергии вз-ствия молекул (поскольку расстояния между ними увеличиваются) за счёт кинетич. энергии. В результате замедления теплового движения молекул темп-ра расширяющегося газа понижается. Реальные процессы сложнее, т. к. газ не изолирован энергетически от внеш. среды. Он совершает внеш. работу (последующие порции газа теснят предыдущие), а над самим газом совершают работу силы внеш. давления (поддерживающие стационарность потока). Это учитывается при составлении энергетич. баланса в опытах Джоуля — Томсона. Работа продавливания через дроссель порции газа, занимающего до дросселя объём У], равна p1V1. Эта же порция газа, занимающая за дросселем объём V2, совершает работу p2V2. Проделанная над газом результирующая внеш. работа A=p1V1-р2V2 в адиабатич. условиях может пойти только на изменение его внутр. энергии: U2-U1=p1V1-p2V2. Из этого соотношения следует, что U1+p1V1=U2+p2V2=h, где h — энтальпия газа (при адиабатич. дросселировании энтальпия газа сохраняется). Отсюда, зная ур-ние состояния газа и выражение для U, можно найти T.
Величина и знак Д.— Т. э. определяются соотношением между работой газа и работой сил внеш. давления, а также св-вами самого газа, в частности размером его молекул и их вз-ствием. Для идеального газа, молекулы к-рого рассматриваются как материальные точки, не взаимодействующие между собой, Д.— Т. э. равен нулю.
В зависимости от условий дросселирования один и тот же газ может как нагреваться, так и охлаждаться.
Кривая инверсии азота. В пределах кривой эффект Джоуля — Томсона положителен (T<0), вне кривой — отрицателен (T>0). Для точек на самой кривой эффект равен нулю.
Темп-pa Тi, при к-рой (для данного давления) разность T, проходя через нулевое значение, меняет свой знак, наз. температурой инверсии Д.— Т. э. Типичная кривая зависимости темп-ры инверсии от давления (кривая инверсии) показана на рисунке. Кривая инверсии разделяет совокупность состояний газа (на рисунке — азота) на такие совокупности, при переходе между к-рыми он охлаждается, и на такие, между к-рыми он нагревается. Значение верхних температур инверсии
(Ti макс)
154
при р0 для ряда газов приведены ниже:
Д.— Т. э., характеризуемый малыми изменениями темп-ры T при малых перепадах давления р, наз. дифференциальным. В случае дифф. Д.— Т. э.
где cp — теплоёмкость газа при пост. давлении. При больших перепадах давления на дросселе темп-pa газа может изменяться значительно. Напр., при дросселировании от 200 до 1 атм и нач. темп-ре 17°С воздух охлаждается на 35°С. Этот интегральный Д.— Т. э. положен в основу многих техн. способов сжижения газов.
• Леонтович М. А., Введение в термодинамику, 2 изд., М.—Л., 1952; Ландау Л. Д., Ахиезер А. И., Л и ф ш и ц Е. М., Курс общей физики. Механика и молекулярная физика, М., 1965.
И. А. Яковлев.
ДИАГНОСТИКА ПЛАЗМЫ, совокупность методов определения параметров ионизов. газа. К определяемым параметрам плазмы относятся плотность n, электронная Те и ионная Ti темп-ры, интенсивность излучения, электрич. и магн. поля и др. Понятие «температура» обычно используется условно, т. к. распределение ч-ц по энергиям в лаб. и косм. плазме редко бывает максвелловским. В таких случаях речь идёт о кинетич. темп-ре, т. е. о ср. энергии ч-ц.
Методы Д. п. делятся на активные и пассивные. Пассивные методы (напр., измерение собств. излучения плазмы) не оказывают влияния на исследуемый объект. К ним относятся спектроскопич. методы, а также фотографирование и измерения эл.-магн. волн в широком диапазоне (тормозное излучение, циклотронное излучение и др.). В активных методах плазма непосредственно вовлекается в процесс измерения, и это может внести искажения в её состояние. Активные методы тем не менее используются наряду с пассивными, расширяя диапазон определяемых параметров. Наиболее распространены след. активные методы Д. п.: зондирование плазмы электрич. и магн. зондами, СВЧ излучением, пучками заряж. и нейтр. ч-ц (корпускулярная Д. п.). Корпускулярная Д. п. может быть и пассивным методом, если исследуются св-ва ч-ц, выходящих из объёма изучаемой плазмы.
Зонды вводятся внутрь плазмы для измерения её локальных параметров. Электрическим (ленгмюровским) зондом измеряют ток на него в зависимости от потенциала зонда относительно плазмы. Ток насыщения позволяет определить плотность плазмы, а форма хар-ки при малых потенциалах даёт электронную темп-ру Те. Эти зонды находят широкое применение при исследованиях холодной незамагниченной лаб. плазмы и космической плазмы. Применение зондов при исследованиях горячей плазмы ограничено вследствие загрязнений, вносимых материалом зонда, а также вследствие трудностей анализа измерений при наличии сильных магн. полей.
Для измерений магн. полей используются магнитные зонды — соленоиды разл. размеров, вводимые в плазму. Такой зонд регистрирует дH/дt, а для получения напряжённости магн. поля Н сигнал с зонда интегрируется. В косм. плазме магн. поля измеряются феррозондами и квантовыми магнетометрами, а также по вращению плоскости поляризации (Фарадея эффект).
Активная корпускулярная Д. п. (зондирование нейтр. атомами и быстрыми заряж. ч-цами) позволяет получать данные о её плотности, темп-ре и полях. При прохождении пучка эл-нов через плазму с сильно изменяющимися полями он отклоняется за счёт поперечной составляющей электрич. поля. Регистрируя величины отклонения от первонач. направления, можно оценить усреднённое вдоль пучка значение электрич. поля. Для плазмы, находящейся в сильном магн. поле, эфф. зондирование осуществляется потоком быстрых нейтр. атомов. Каждый атом зондирующего пучка, потерявший эл-н вследствие перезарядки или ионизации электронным ударом, отклоняется магн. полем и не попадает на регистратор. По наблюдаемому ослаблению пучка можно получить информацию об усреднённых вдоль его траектории n и Т'е.
Зондирование плазмы СВЧ излучением явл. одним из удобных методов определения nе (особенно для косм. плазмы). Он основан на зависимости диэлектрической проницаемости плазмы от её плотности: =1-2p/2, где р — плазменная частота. Каждому значению p соответствует определ. критич. электронная плотность
nкрит=me2p/4e2,
где me — масса электрона. Если частота падающей эл.-магн. волны >p, сигнал проходит через плазму, при p плазма отражает волны. Этот метод широко используется для зондирования ионосферы, а также при исследовании лаб. плазмы. Однако этот т. н. метод «отсечки» сигнала требует изменения частоты генератора в широких пределах и не позволяет вести наблюдение за плазмой с быстроменяющимися параметрами. Поэтому более широкое применение в исследованиях лаб. плазмы, особенно нестационарной, находят интерферометрические методы, основанные на зависимости разности фаз между опорным излучением и излучением, прошедшим через плазму, от плотности плазмы.
При плотностях плазмы n1014 см-3 используют интерферометры в СВЧ диапазоне, а при n1017 см-3 пригодны только оптические интерферометры. Наибольшая чувствительность достигнута на интерферометре Фабри — Перо, работающем в ИК диапазоне. Приборы с широким углом зрения позволяют получить мгновенную пространств. картину распределения плотности плазмы. При n1015 см-3 удобно использовать голографич. интерферометрию (см. Голография). Измерение циклотронного излучения плазмы, позволяющее определить её плотность, находит особенно широкое применение в исследованиях косм. плазмы (регистрация излучений Солнца и др. звёзд).
Спектроскопическая Д. п. явл. другим важнейшим методом исследования косм. и лаб. плазмы. Каждый из спектроскопич. методов пригоден лишь в очень ограниченной области параметров плазмы. Анализ непрерывного спектра излучения плазмы позволяет определить Те и nе. Ширина и форма наблюдаемых спектр. линий могут дать информацию о темп-ре газа (по Доплера эффекту), о плотности заряж. ч-ц (по Штарка эффекту), о магн. полях (по Зеемана эффекту и эффекту Фарадея). Вклад каждого из этих механизмов в наблюдаемый контур линии можно выделить даже в тех случаях, когда их влияние соизмеримо. Эффект Штарка сильнее всего влияет на далёкие «крылья» спектр. линии, эффект Доплера — на центральную её часть, а зеемановские компоненты легко выделить, исследуя поляризацию. Анализ контуров линий излучения высокоионизов. атомов позволяет получить ионную темп-ру ti горячей плазмы. Отношение интенсивностей спектр. линий даёт возможность в ряде случаев определить Те. При данной Те в плазме существуют в осн. ионы с определ. зарядом, поэтому уже только идентификация наиб. ярких спектр. линий позволяет грубо определить электронную темп-ру. При Те кэВ осн. информацию о ней несут линии рентг. спектра. Измерение рентг. тормозного излучения плазмы позволяет определить n и Те. Сплошной рентг. спектр излучения успешно регистрируется в лаборатории только для плазмы высокой плотности (n1017 см-3); при низкой плотности плазмы рентг. излучение возникает в осн. из-за попадания ч-ц на стенки камеры. Спектроскопич. измерения в радиодиапазоне позволяют определять уровень электромагнитных шумов в плазме.
Лазерная Д. п. Анализ рассеянного на свободно движущихся эл-нах эл.-магн. излучения стал возможным только благодаря появлению и развитию лазеров большой мощности.
155
При небольшой плотности плазмы интенсивность рассеянного излучения пропорц. плотности. Контур линии рассеянного света определяется эффектом Доплера, причём, т. к. рассеяние происходит на эл-нах, а не на ионах, ширины спектр. линий составляют сотни А. В плотной плазме возникает рассеяние на флуктуациях плотности зарядов, и линия рассеянного излучения имеет в центре довольно острый пик, близкий по форме ионному доплеровскому.
Кроме осн. максимума, соответствующего частоте падающего излучения, наблюдаются максимумы комбинационного рассеяния на шумах плазмы, позволяющие получить информацию об уровне её турбулентности. По положению комбинац. максимумов, отвечающих ленгмюровским плазменным частотам р, определяют плотность плазмы. Сложность этих исследований заключается в том, что при малых плотностях (n1012 см-3) трудно выделить сигнал на фоне излучения, рассеянного на деталях установки, а при n ~ 1017 см-3 сильный фон создаёт собственное излучение плазмы.
Пассивная корпускулярная Д. п. применяет электрич. и магн. анализаторы (см. Масс-спектроскопия) и калориметрич. методы измерения для ч-ц, выходящих из объёма изучаемой плазмы. Трудности выведения ч-ц из плазмы, находящейся в сильном магн. поле, делают предпочтительным анализ быстрых нейтр. атомов, возникших в плазме за счёт перезарядки. Такие атомы ионизуются затем в потоке эл-нов или при «обдирке» на газовых мишенях (либо на тонких фольгах) и далее анализируются по энергиям. При высоких темп-pax, когда в плазме возникают термоядерные реакции D+D и D+T, измерения потоков и распределения по энергиям продуктов яд. реакций, в частности нейтронов, позволяют определять ti и нек-рые др. параметры плазмы.
Фотографирование плазмы в разл. спектр. диапазонах позволяет грубо оценить пространств. распределение n и Te. Особенно полезны фотографии плазмы с помощью камеры-обскуры в мягком рентг. излучении. Сверхскоростная фотография позволяет понять динамику развития неустойчивостей и получить информацию о хар-ре вз-ствия плазмы с магн. полем.
• Диагностика плазмы. Сб. статей, под ред. С. Ю. Лукьянова, М., 1973; Подгорный И. М., Лекции по диагностике плазмы, М., 1968; Диагностика плазмы, под ред. Р. Хаддлстоуна и С. Леонарда, пер. с англ., М., 1967; Кузнецов Э. И., Щеглов Д. А., Методы диагностики высокотемпературной плазмы, М., 1974; Г о л а н т В. Е., Сверхвысокочастотные методы исследования плазмы, М., 1968.
И. М. Подгорный.
ДИАГРАММА НАПРАВЛЕННОСТИ антенны, зависимость от направления напряжённости поля или мощности, излучаемой передающей антенной, или эдс, либо токов, индуцируемых в приёмной антенне. См. Антенна.
ДИАГРАММА СОСТОЯНИЯ (диаграмма равновесия, фазовая диаграмма), геом. изображение равновесных состояний термодинамич. системы при разных значениях параметров, определяющих эти состояния: темп-ры Т, давления р, состава системы (концентраций компонентов xi), мольного объёма v, напряжённостей электрич. и магн. полей и др. Д. с. даёт информацию о фазовом составе системы в зависимости от Т, р, х; и др. параметров. В простейшем случае, когда система состоит только из одного компонента, Д. с. представляет собой трёхмерную пространств. фигуру, построенную в трёх прямоуг. координатных осях, по к-рым откладывают значения Т, р и v (или др. параметров).
Обычно рассматривают проекции трёхмерной Д. с. на одну из координатных плоскостей (чаще на плоскость р, Т', рис.). Любая точка Д. с. (ф и г у р а т и в н а я т о ч к а) изображает равновесное состояние в-ва при данных значениях р и Т. Точка О (тройная точка) соответствует равновесию трёх фаз в-ва: твёрдой, жидкой и газообразной. В точке О пересекаются три кривые: ОА (кривая в о з г о н к и, или сублимации), каждая точка к-рой соответствует равновесию тв. и газообразной фаз в-ва; ОК (кривая испарения) — жидкой и газообразной фазам; кривая плавления 0В (или ОB') — тв. и жидкой фазам (OS для в-в, у к-рых темп-ра плавления Тпл растёт с давлением, OB' для в-в с уменьшающейся Тпл с ростом р). Эти кривые делят плоскость Д. с. на области существования каждой из трёх фаз: твёрдой (S), жидкой (L) и газообразной (G). В точке K — критической точке исчезает различие между св-вами жидкости и газа. Согласно Гиббса правилу фаз, точке О соответствует безвариантное равновесие, точкам на кривых ОА, ОВ (ОB') и ОК — моновариантное равновесие, а точкам в каждой из областей S, L и G — дивариантное (двухвариантное) равновесие. При существовании у в-ва полиморфных модификаций Д. с. усложняется (число тройных точек равно числу полиморфных превращений, см. Полиморфизм).
Для построения Д. с. используют данные термич. анализа, рентгеновского
структурного анализа, оптич. и электронной микроскопии, нейтронографии, дилатометрии, измерений твёрдости и др. методов.
• Аносов В. Я., Краткое введение в физико-химический анализ, М., 1959; В о л А. Е., Строение и свойства двойных металлических систем, т. 1—2, М., 1959—62; В о л А. Е., К а г а н И. К., Строение и свойства двойных металлических систем, т. 3, М., 1976; П е т р о в Д. А., Тройные системы, М., 1953; Воловик Б. Е., Захаров М. В., Тройные и четверные системы, М., 1948; П а л а т н и к Л. С., Л а н д а у А. И., Фазовые равновесия в многокомпонентных системах, Хар., 1961.