Лекция 16. Атомное ядро >16 Состав и основные характеристики атомного ядра >16 Состав ядра
Вид материала | Лекция |
- Реферат по физике на тему: "Атомное ядро", 152.32kb.
- Реферат по физике на тему: "Атомное ядро", 140.33kb.
- Литература 1 История открытий в области строения атомного ядра, 150.42kb.
- Атом. Ядро атома. Ядерные реакции. Термоядерный синтез, 209.52kb.
- Сценарий проведения открытого урока по физике в 11 классе на тему Учитель физики, 73.2kb.
- Программы и задания фен по специальность «Биология» 1-й курс, Iсеместр, 730.1kb.
- Программа Государственного экзамена по подготовке магистра по направлению «Физика ядра, 32.88kb.
- Компьютерное моделирование фоновых условий в эксперименте gerda и радиационной обстановки, 318kb.
- Лекция 9 Базальные ядра. Лимбическая система, 26.97kb.
- Учебник " Открытая физика 5" (все разделы, от Механики до Физики атомного ядра). Интересен, 252.87kb.
16.6. Ядерные реакции
Ядерные реакции - это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с γ-квантами) или друг с другом. Это взаимодействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10-13 см.
Наиболее распространенным типом ядерной реакции является взаимодействие частицы
а с ядром X, в результате чего образуется частица b и ядро Y. Это записывают символически так:
a + X → Y + b
или в сокращенном виде
| (16.31) |
Роль частиц а и b чаще всего выполняют нейтрон п, протон р, дейтрон d, α-частица и γ-квант.
16.6.1. Выход ядерной реакции
В ядерной физике вероятность взаимодействия принято характеризовать с помощью эффективного сечения σ. Наглядно σ интерпретируется как площадь сечения ядра X, попадая в которую налетающая частица вызывает реакцию.
Если мишень из ядер X настолько тонкая, что ядра не перекрывают друг друга, то относительная доля площади S мишени, перекрытая ядрами X, равна σnS/S = σn, где п — число ядер на единицу площади мишени. И мы можем сказать, что относительное число ∆N/N частиц а, вызвавших ядерную реакцию (или, другими словами, вероятность Р, что частица а вызовет ядерную реакцию), определяется как
| (16.32) |
Эту величину называют выходом ядерной реакции
| (16.33) |
Непосредственно измеряемой величиной является w. Зная w и п, можно найти σ с помощью (16.32).
Если мишень не тонкая, то выражение для w усложняется:
Геометрическое сечение ядра имеет порядок 10-24 см2. Эту величину принимают за единицу ядерных сечений и называют барном (б),
Из-за волновых и квантовых свойств частиц сечение σ может оказаться как меньше геометрического сечения, так и больше (причем иногда значительно). Это зависит как от самих взаимодействующих частиц, так и от кинетической энергии налетающей частицы а. В качестве примера на рис. 16.7 приведена кривая зависимости сечения захвата нейтрона ядром 238U от кинетической энергии К нейтрона.
Рис. 16.7.
16.6.2. Типы ядерных реакций
Установлено, что реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. Первый этап — это захват налетающей частицы а ядром X с образованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии. В этом состоянии ядро пребывает до тех пор, пока в результате внутренних флуктуации на одной из частиц (которая может состоять и из нескольких нуклонов) не сконцентрируется энергия, достаточная для вылета ее из ядра.
Эти реакции иногда записывают с указанием составного ядра С, как например
| (16.34) |
где звездочка у С указывает на то, что ядро С* возникает в возбужденном состоянии.
Составное ядро С* существует достаточно долго — по сравнению с «ядерным временем», т. е. временем пролета нуклона с энергией порядка 1 МэВ (υ ≈ 109 см/с) расстояния, равного диаметру ядра. Ядерное время τя ≈ 10-21 с. Время же жизни составного ядра в возбужденном состоянии ~ 10-14 с. Т. е. в ядерном масштабе составное ядро живет действительно очень долго. За это время все следы истории его образования исчезают. Поэтому распад составного ядра — вторая стадия реакции — протекает независимо от способа образования составного ядра.
Реакции, вызываемые быстрыми частицами с энергией, превышающей десятки МэВ, протекают без образования составного ядра. И ядерная реакция, как правило, является прямой. В этом случае налетающая частица непосредственно передает свою энергию какой-то частице внутри ядра, например, одному нуклону, дейтрону, α-частице и т. д., в результате чего эта частица вылетает из ядра.
Типичная реакция прямого взаимодействия — это реакция срыва, когда налетающей частицей является, например, дейтрон. При попадании одного из нуклонов дейтрона в область действия ядерных сил он будет захвачен ядром, в то время как другой нуклон дейтрона окажется вне зоны действия ядерных сил и пролетит мимо ядра. Символически реакцию срыва записывают как (d, n) или (d, p).
При бомбардировке ядер сильно взаимодействующими частицами с очень высокой энергией (от нескольких сотен МэВ и выше) ядра могут «взрываться», распадаясь на множество мелких осколков. При регистрации такие взрывы оставляют след в виде многолучевых звезд.
16.6.3. Энергия реакции
Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии. Это надо понимать так. Пусть Е0 и Е'0 — суммы энергий покоя исходных частиц и продуктов реакции. Полная энергия в реакции сохраняется, т. е.
| (16.35) |
где К и К' — суммарные кинетические энергии исходных частиц и продуктов реакции. Из этого равенства следует, что убыль суммарной энергии покоя (Е0 - Е'0) равна приращению суммарной кинетической энергии (К' - К) и наоборот. Эти величины и называют энергией реакции Q:
| (16.36) |
Реакции с Q > 0 называют экзоэнергетическими (с выделением энергии, кинетической), реакции же с Q < 0 — эндоэнергетическими. Часто ядерную реакцию с учетом Q записывают так:
| (16.37) |
16.6.4. Порог реакции
Из механики известно, что кинетическая энергия К системы частиц может быть представлена как
| (16.38) |
где — кинетическая энергия этой системы частиц в Ц-системе, а КС — кинетическая энергия, связанная с движением системы как целого, т. е. с движением центра масс С системы. Энергия КС сохраняется и в реакции не участвует, поэтому формулу (16.36) мы можем представить в виде
| (16.39) |
Изобразим для наглядности схему ядерной реакции в энергетической шкале в Ц-системе для двух случаев:
- Q > 0, реакция экзоэнергетическая (рис.16.8),
- Q < 0, реакция эндоэнергетическая (рис.16.9).
Рис. 16.8. Рис. 16.9.
Из этих рисунков видно, что, во-первых, всякая реакция, обратная экзоэнергетической, будет эндоэнергетической. Во-вторых, экзоэнергетическая реакция может идти при сколь угодно малой энергии сталкивающихся частиц (если нет каких-либо запретов на ту или иную реакцию). Эндоэнергетическая же реакция может идти только тогда, когда суммарная энергия сталкивающихся частиц (в Ц-системе) превосходит некоторое минимальное значение, которое называют порогом реакции.
Порог реакции, т. е. минимальная энергия Кпор налетающей частицы измеряется всегда в Л-системе, где ядра мишени покоятся.
Найдем выражение для Кпор налетающей частицы. Этот вопрос наиболее просто решается в Ц-системе, где ясно (см. рис. 16.9), что суммарная кинетическая энергия частиц до столкновения во всяком случае должна быть не меньше |Q| , т. е. ≥ |Q|.
Отсюда следует, что существует минимальное значениемин = |Q|, при котором кинетическая энергия системы целиком пойдет на создание покоящихся в Ц-системе частиц т' и М'.
Теперь перейдем в Л-систему. Так как в Ц-системе при мин образовавшиеся частицы т' и М' покоятся, то это значит, что в Л-системе при соответствующем значении пороговой энергии Кпор налетающей частицы обе частицы, т' и М', после образования будут двигаться как единое целое, причем с суммарным импульсом, равным импульсу р налетающей частицы, и кинетической энергией р2/2(т + М). Поэтому
А так как Кпор = р2/2т, то, исключив р2 из этих двух уравнений, получим
| (16.40) |
Это и есть пороговая кинетическая энергия налетающей частицы т, начиная с которой данная эндоэнергетическая реакция становится энергетически возможной.
16.7. Деление ядер
16.7.1. Реакция деления ядра
Реакция деления ядра происходит при облучении тяжелого ядра нейтронами, при этом ядро делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Деление тяжелых ядер может быть вызвано не только нейтронами, но и протонами, дейтронами, α-частицами, а также γ-фотонами
Продолжая исследования, начатые Ферми, О. Ган и Ф. Штрассман обнаружили в 1939 году, что при бомбардировке урана нейтронами возникают элементы средней части периодической системы – радиоактивные изотопы бария (Z = 56), криптона (Z = 36) и др.
Уран встречается в природе в виде двух изотопов: (99,3 %) и (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ.
Основной интерес для ядерной энергетики представляет реакция деления ядра. В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:
| (16.41) |
В результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д. Продукты деления ядра урана нестабильны, так как в них содержится значительное избыточное число нейтронов. Действительно, отношение N / Z для наиболее тяжелых ядер составляет примерно 1,6 (рис. 16.10), для ядер с массовыми числами от 90 до 145 это отношение порядка 1,3÷1,4. Поэтому ядра-осколки испытывают серию последовательных β–-распадов с испусканием γ-квантов, в результате которых число протонов в ядре увеличивается, а число нейтронов уменьшается до тех пор, пока не образуется
Рис. 16.10. Числа протонов и нейтронов в
стабильных ядрах.
стабильное ядро. Большинство нейтронов испускается мгновенно (за время, меньшее 10-14 с). Часть (около 0,75 % ) нейтронов, запаздывающих нейтронов, испускается не мгновенно, а с запаздыванием от 0,05 с до 1 мин. В среднем на каждый акт деления приходится 2,5 выделившихся нейтронов.
Вероятность деления ядер определяется энергией нейтронов. Например, если высокоэнергетичные нейтроны вызывают деление практически всех ядер, то нейтроны с энергией в несколько мегаэлектрон-вольт - только тяжелых ядер (А > 210).
Нейтроны, обладающие энергией активации (минимальной энергией, необходимой для осуществления реакции деления ядра) порядка 1 МэВ и выше, вызывают деление ядер урана , тория , плутония и др. Ядра , делятся нейтронами любых энергий, но особенно эффективно медленными нейтронами.
В основу теории деления атомных ядер (Н. Бор, Я. И. Френкель) положена капельная модель ядра. Ядро рассматривается как капля электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной, и подчиняющейся законам квантовой механики), частицы которой при попадании нейтрона в ядро приходят в колебательное движение, в результате чего ядро разрывается на две части, разлетающиеся с огромной энергией.
16.7.2. Цепная ядерная реакция
При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона (см. (16.41)). При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 16.11. Для осуществления цепной реакции необходимо, чтобы так называемый коэффициент размножения нейтронов k был больше единицы. Другими словами, в каждом последующем поколении нейтронов должно быть больше, чем в предыдущем. Коэффициент размножения определяется не только числом нейтронов, образующихся в каждом элементарном акте, но и условиями, в которых протекает реакция – часть нейтронов может поглощаться другими ядрами или выходить из зоны реакции. Нейтроны, освободившиеся при делении ядер урана-235, способны вызвать деление лишь ядер этого же урана, на долю которого в природном уране приходится всего лишь 0,7 %. Такая концентрация оказывается недостаточной для начала цепной реакции. Изотоп также может поглощать нейтроны, но при этом не возникает цепной реакции.
Цепная реакция в уране с повышенным содержанием урана-235 может развиваться только тогда, когда масса урана превосходит так называемую критическую массу. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу. Для чистого урана-235 критическая масса составляет около 50 кг.
Рис. 16.11. Схема развития цепной реакции.
Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов
ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D2O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду. Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.
Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.
Цепные реакции делятся на управляемые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хранении не взорвалась, в ней (или ) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычною взрыва эти массы сближаются, общая масса делящегося вещества становится больше критической и возникает взрывная цепная реакция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная реакция начинается за счет имеющихся нейтронов спонтанного деления или нейтронов космического излучения. Управляемые цепные реакции осуществляются в ядерных реакторах.
Кинетическая энергия, выделяющаяся при делении одного ядра урана, огромна – порядка 200 МэВ. Оценку выделяющейся при делении ядра энергии можно сделать с помощью понятия удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90–145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.
В природе имеются три изотопа, которые могут служить ядерным топливом: ,, . Исходным продуктом для получения искусственного ядерного топлива служит
| (16.42) |
| (16.43) |
Устройство, в котором поддерживается управляемая реакция деления ядер, называется