Лекция 16. Атомное ядро >16 Состав и основные характеристики атомного ядра >16 Состав ядра

Вид материалаЛекция

Содержание


16.3.3. Модели ядер
16.4.1. Закон радиоактивного распада
Т и средним временем жизни τ ядра. Период полураспада Т
16.4.2. Основные типы радиоактивности
А, но с зарядовым числом Z
К-оболочки) и его зарядовое число Z
Спонтанное деление тяжелых ядер.
Протонная радиоактивность.
16.5. Эффект Мёссбауэра
Подобный материал:
1   2   3   4

16.3.3. Модели ядер

В теории атомного ядра важную роль играют модели, достаточно хорошо описывающие определенную совокупность ядерных свойств и допускающие сравнительно простую математическую трактовку. При этом каждая модель обладает, естественно, ограниченными возможностями и не претендует на полное описание ядра.

Ограничимся кратким рассмотрением двух моделей ядра: капельной и оболочечной.

Капельная модель. В ней атомное ядро рассматривается как капля заряженной несжимаемой жидкости с очень высокой плотностью (~1014 г/см3). Капельная модель позволила вывести полуэмпирическую формулу для энергии связи ядра и помогла объяснить ряд других явлений, в частности процесс деления тяжелых ядер.

Оболочечная модель. В данной модели считается, что каждый нуклон движется в усредненном поле остальных нуклонов ядра. В соответствии с этим имеются дискретные энергетические уровни, заполненные нуклонами с учетом принципа Паули. Эти уровни группируются в оболочки, в каждой из которых может находиться определенное число нуклонов. Полностью заполненные оболочки образуют особо устойчивые структуры. Таковыми являются ядра, имеющие, в соответствии с опытом, число протонов, либо нейтронов (либо оба эти числа) 2, 8, 20, 28, 50, 82, 126. Эти числа и соответствующие им ядра называют магическими.

Кроме предсказания магических чисел, эта модель позволила объяснить спины основных и возбужденных состояний ядер, а также их магнитные моменты.

16.4. Радиоактивность


Радиоактивностью называется самопроизвольное превращение одних атомных ядер в другие, сопровождаемое испусканием элементарных частиц. Такие превращения претерпевают только нестабильные ядра. К числу радиоактивных процессов относятся: 1) α-распад, 2) β-распад (в том числе электронный захват), 3) γ-излучение ядер, 4) спонтанное деление тяжелых ядер, 5) протонная радиоактивность.

Радиоактивность, наблюдающаяся у ядер, существующих в природных условиях, называется естественной. Радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной. Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одним и тем же законам. Радиоактивное ядро называют материнским, а ядра, образующиеся в результате распада, — дочерними.

Почти 90 % из 2500 известных атомных ядер нестабильны. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержат избыток нейтронов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.

Явление радиоактивности было открыто А. Беккерелем (1896 г.), который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года М.и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий. В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. На рис. 16.2 изображена схема эксперимента, позволяющая обнаружить сложный состав радиоактивного излучения. В магнитном поле α- и β-лучи испытывают отклонения в противоположные стороны, причем β-лучи отклоняются значительно больше. γ-лучи в магнитном поле вообще не отклоняются.

Рис. 16.2. Схема опыта по обнаружению α-, β- и γ-излучений.

К – свинцовый контейнер, П – радиоактивный препарат,

Ф – фотопластинка.


16.4.1. Закон радиоактивного распада

Рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Число ядер, распадающихся за малый промежуток времени dt, пропорционально как числу N имеющихся ядер в этот момент, так и dt:



(16.16)

где -dN — убыль числа ядер за время dt (это и есть число распавшихся ядер за промежуток dt), λпостоянная распада, величина, характерная для каждого радиоактивного препарата. Интегрирование уравнения (16.16) дает



(16.17)

где N0 — число ядер в момент t = 0, N — число нераспавшихся ядер к моменту t. Соотношение (16.17) и называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (16.16) видно, что эта величина |dN / dt| = λN. Ее называют активностью А. Таким образом, активность



(16.18)

Ее измеряют в беккерелях (Бк), 1 Бк = 1 распад/с; а также в кюри (Ки), 1 Ки = 3,7 • 1010 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада Т и средним временем жизни τ ядра.

Период полураспада Т — это время, за которое распадается половина первоначального количества ядер. Оно определяется условием N0 / 2 = N0e-λТ, откуда



(16.19)

Среднее время жизни τ. Число ядер δN(t), испытавших распад за промежуток времени (t, t + dt), определяется правой частью выражения (16.16): δN(t) = λN dt. Время жизни каждого из этих ядер равно t. Сумма времен жизни всех N0 имевшихся первоначально ядер определяется интегрированием выражения tδN(t) по времени от 0 до ∞. Разделив сумму времен жизни всех N0 ядер на N0, мы и найдем среднее время жизни τ рассматриваемого ядра:



Остается подставить сюда выражение (16.17) для N(t) и выполнить интегрирование по частям, после чего мы получим:

τ =1 / λ

(16.20)

Как следует из (16.17) τ равно промежутку времени, за которое первоначальное количество ядер уменьшается в е раз.

Сравнивая (16.19) и (16.20), видим, что период полураспада Т и среднее время жизни τ имеют один и тот же порядок и связаны между собой формулой



(16.21)


16.4.2. Основные типы радиоактивности

Альфа-распад. Альфа-лучи представляют собой поток ядер гелия . Распад протекает по следующей схеме:



(16.22)

где X — символ материнского ядра, Y — дочернего. Примером может служить распад изотопа урана 238U, протекающий с образованием тория :



Установлено, что α-частицы испускают только тяжелые ядра. Кинетическая энергия, с которой α-частицы вылетают из распадающегося ядра, порядка нескольких МэВ. В воздухе при нормальном давлении пробег α-частиц составляет несколько сантиметров (их энергия расходуется на образование ионов на своем пути).

Кинетическая энергия α-частиц возникает за счет избытка энергии покоя материнского ядра над суммой энергий покоя дочернего ядра и α-частицы. Эта избыточная энергия распределяется между α-частицей и дочерним ядром в отношении, обратно пропорциональном их массам (в соответствии с законом сохранения импульса).

Радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рис. 16.3. Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.




Рис. 16.3. Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона . Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ.


В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица.

Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Внутренняя сторона барьера обусловлена ядерными силами, внешняя же — силами кулоновского отталкивания α-частицы и дочернего ядра. Энергия α-частицы в

Рис. 16.4. Туннелирование α-частицы

сквозь потенциальный барьер.


ядре недостаточна для преодоления этого барьера (рис. 16.4). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером.

Бета-распад. Это самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А, но с зарядовым числом Z, отличающимся от исходного на ±1. Это связано с тем, что β-распад сопровождается испусканием электрона (позитрона) или его захватом из электронной оболочки атома. Различают три разновидности β-распада:
  1. электронный β--распад, в котором ядро испускает электрон и его зарядовое число Z становится Z + 1;
  2. позитронный β+-распад, в котором ядро испускает позитрон и его зарядовое число Z становится Z - 1;
  3. К-захват, в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К-оболочки) и его зарядовое число Z становится равным Z - 1. На освободившееся место в К-оболочке переходит электрон с другой оболочки, и поэтому К-захват всегда сопровождается характеристическим рентгеновским излучением.

Первый вид распада (β--распад) протекает по схеме



(16.23)

Чтобы подчеркнуть сохранение заряда и числа нуклонов в процессе β--распада, здесь приписано β-электрону зарядовое число Z = -1 и массовое число А = 0.

Из схемы (16.23) видно, что дочернее ядро имеет атомный номер на единицу больший, чем у материнского ядра, массовые числа обоих ядер одинаковы. Наряду с электроном испускается также антинейтрино . Весь процесс протекает так, как если бы один из нейтронов ядра превратился в протон.

Бета-распад может сопровождаться испусканием γ-лучей. Механизм их возникновения тот же, что и в случае α-распада, — дочернее ядро возникает не только в нормальном, но и в возбужденных состояниях. Переходя затем в состояние с меньшей энергией, ядро высвечивает γ-фотон. β-электроны


Рис. 16.5.


обладают самой разнообразной кинетической энергией от 0 до Емакс На рис. 16.5 изображен энергетический спектр электронов, испускаемых ядрами при β-распаде. Площадь, охватываемая кривой, дает общее число электронов, испускаемых в единицу времени, dN — число электронов, энергия которых заключена в интервале dE. Энергия Емакс соответствует разности между массой материнского ядра и массами электрона и дочернего ядра. Следовательно, распады, при которых энергия электрона Е меньше Емакс протекают с кажущимся нарушением закона сохранения энергии.

Чтобы объяснить исчезновение энергии Емакс - Е, В. Паули высказал в 1932 г. предположение, что при β-распаде вместе с электроном испускается еще одна частица, которая уносит с собой энергию Емакс - Е. Так как эта частица никак себя не обнаруживает,

следовало признать, что она нейтральна, неуловимая вследствие очень большой проникающей способности и обладает весьма малой массой (в настоящее время установлено, что масса этой частицы близка к нулю, но не нуль). Эту гипотетическую частицу назвали нейтрино (что означает «маленький нейтрон»). Установлено, что спин нейтрино (и антинейтрино) равен 1/2.

Итак, энергия, выделяющаяся при β-распаде, распределяется между электроном и антинейтрино (либо между позитроном и нейтрино, см. ниже) в самых разнообразных пропорциях.

Второй вид распада (β+-распад) протекает по схеме



(16.24)

Процесс сопровождается испусканием позитрона е+ (он обозначен символом ) и нейтрино ν, возможно также возникновение γ-лучей. Позитрон является античастицей для электрона.

Процесс β+-распада протекает так, как если бы один из протонов исходного ядра превратился в нейтрон, испустив при этом позитрон и нейтрино:



(16.25)

Для свободного протона такой процесс невозможен по энергетическим соображениям, так как масса протона меньше массы нейтрона. Однако протон в ядре может заимствовать требуемую энергию от других нуклонов, входящих в состав ядра.

Третий вид β-распада (электронный захват) заключается в том, что ядро поглощает один из К-электронов (реже — один из L- или М-электронов) своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:




Возникшее ядро может оказаться в возбужденном состоянии. Переходя затем в более низкие энергетические состояния, оно испускает γ-фотоны. Схема процесса:



(16.26)

Место в электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

Гамма-распад. γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Спонтанное деление тяжелых ядер. Г. Н. Флеровым и К. А. Петржаком (1940 г.) был обнаружен процесс самопроизвольного деления ядер урана на две примерно равные части. Впоследствии это явление было наблюдено и для многих других тяжелых ядер. По своим характерным чертам спонтанное деление близко к вынужденному делению.

Протонная радиоактивность. Как следует из названия, при протонной радиоактивности ядро претерпевает превращение, испуская один или два протона (в последнем случае говорят о двупротонной радиоактивности). Этот вид радиоактивности наблюдался впервые в 1963 г. группой физиков, руководимой Г. Н. Флеровым.


16.5. Эффект Мёссбауэра

Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е*. Переходя в основное состояние, возбужденное ядро испускает γ-квант с энергией ħω и импульсом ħω / с, удовлетворяющим законам сохранения:



(16.27)

где К — энергия отдачи ядра. Из этих уравнений следует, что



(16.28)

здесь т — масса ядра.

Согласно первой из формул (16.27) энергия γ-кванта ħω сдвинута относительно энергии Е* ядерного перехода на величину К — энергию отдачи ядра. Поэтому γ-квант сможет поглотиться другим ядром только при условии, что сдвиг



(16.29)

где Г — ширина возбужденного уровня Е*.

Выясним, насколько выполняется соотношение (16.29). Например, ядро при переходе из первого возбужденного состояния испускает γ-квант с энергией ħω ≈ 14 кэВ. При этом его энергия испытывает сдвиг на величину



Ширина же Г первого возбужденного уровня, время жизни которого τ ~ 10-7 с, согласно соотношению неопределенностей ∆Е ·∆t ~ ħ равна



(16.30)

Таким образом, сдвиг К не меньше Г, а наоборот, больше на пять порядков, что далеко перекрывает возможность резонансного поглощения. Известно, что атомы наиболее интенсивно поглощают свет частоты, соответствующей переходу из основного состояния атома в ближайшее к нему возбужденное состояние. Это явление называют резонансным поглощением. Другими словами, фотоны, испущенные атомом при переходе из первого возбужденного состояния в основное, без всяких проблем поглощаются такими же атомами, поскольку их частоты практически совпадают. В рассмотренном выше примере для ядра условия далеки от резонансного поглощения.

И тем не менее явление резонансного поглощения γ-лучей было обнаружено Мёссбауэром (1958) . Это оказалось возможным только с ядрами, входящими в состав кристалла. При этом существует вероятность испускания γ-кванта ядром с отдачей, которую воспринимает не ядро, а весь кристалл в целом, не меняя своего внутреннего состояния (т. е. без возбуждения колебаний решетки). Масса кристалла несопоставимо велика по сравнению с массой отдельного ядра, поэтому энергия отдачи кристалла практически равна нулю. В результате частота испущенного γ-кванта не смещается относительно резонансного значения, и этот γ-квант может быть поглощен другим таким же ядром, тоже входящим в состав кристалла.

В этом заключается суть эффекта Мессбауэра: испускание и поглощение γ-квантов без отдачи, т. е. резонансное. Этот эффект удается наблюдать только при очень низких температурах, но иногда и при комнатных температурах (в случае с Fe).

Эффект Мессбауэра наблюдают так. Источник γ-излучения приводят в движение с небольшой

Рис. 16.6.


скоростью υ навстречу поглотителю или в обратном направлении. При этом измеряют скорость счета γ-квантов за поглотителем. Если υ0, то резонанс нарушается: линии испускания и поглощения сдвигаются относительно друг друга за счет эффекта Доплера. При υ = 0 наблюдается резонансное поглощение γ-квантов, что показано на рис. 16.6.

Благодаря очень малому отношению ширины Г возбужденных ядерных уровней к энергии возбуждения Е* (Г/Е* ~ 10-12 ÷ 10-16) эффект Мессбауэра дает уникальный метод измерения ничтожных изменений энергии, которые не могут быть измерены никаким другим методом.

В частности, с помощью этого эффекта удалось обнаружить в лабораторных условиях гравитационное смещение спектральных линий (уменьшение частоты фотона при удалении его от источника тяготения). Для этого надо было измерить относительное изменение энергии фотона порядка 10-15 на базе около 20 м, что впервые и проделали Паунд

и Ребка (1960).