М. И. Панасюк, профессор, д ф. м н

Вид материалаДокументы

Содержание


Основная концепция эксперимента НУКЛОН
Конструкция прибора НУКЛОН.
Принципиальная схема детектора НУКЛОН.
Общий вид детектора НУКЛОН.
Преимущества эксперимента НУКЛОН по сравнению с другими экспериментами
Подобный материал:
1   2   3

Основная концепция эксперимента НУКЛОН

Основная концепция эксперимента НУКЛОН - это создание научной аппаратуры относительно небольшого веса (менее 200 кг) и габаритных размеров (менее 1.0 м3), способной решать актуальные задачи экспериментальной физики КЛ в широком диапазоне энергий 1011-1015 эВ. Этот подход не требует собственного носителя аппаратуры, как это было в предыдущих исследованиях. Для ее экспонирования возможно использование дополнительных резервов, которые регулярно появляются на ряде серийных российских КА при выполнении долговременных целевых задач. Такая концепция позволяет минимизировать затраты и максимальным образом приблизить срок проведения космического эксперимента.

Резкое уменьшение массы аппаратуры достигается тем, что в проектируемом спектрометре предлагается вернуться к так называемым кинематическим методам определения энергии первичной частицы – вернее их модифицировать. Методы восстановления энергии по углам вылета вторичных частиц довольно широко применялись в экспериментах с космическими лучами в конце 50-ых, начале 60-ых годов. В качестве детекторов частиц использовались либо ядерные эмульсии, либо искровые камеры. Эта методика основана на регистрации углов разлета вторичных частиц, рожденных в акте неупругого взаимодействия частицы с ядром атома мишени. Оказывается, лоренц фактор частицы =E/m (величина, непосредственно связанная с энергией и массой частицы) может быть определен, если измерить углы вылета всех вторичных частиц qi и найти, например, среднюю величину логарифма тангенса этих углов


ln (E/m) ~ <-ln tg q>


Из формулы видно, что чем больше энергия частицы, тем меньше средний угол вылета вторичных частиц, а значит, каскад становится «уже». В отличие от ионизационных калориметров эта методика не требуют толстого поглотителя энергии, достаточно тонкой мишени глубиной в несколько г/см2. Однако применение чисто кинематических методов приводит к достаточно большой ошибке в определении энергии, поэтому был предложен комбинированный подход: измерять не только «ширину» каскада вторичных частиц, но и их количество, т.е. объединить кинематический метод с методом очень тонкого калориметра. В результате необходимо измерить пространственную плотность вторичных частиц на начальном участке развития каскада вторичных частиц, т.е. получить «фотографию» (интенсивность частиц на плоскости) пятна от каскада вторичных частиц на некоторой глубине наблюдения. Как выглядит такой каскад от протона с энергией 100 ТэВ можно увидеть на рисунке ниже. Этот рисунок визуализирует расчет прохождения частицы через установку НУКЛОН по современным программам.


И
зображение каскада вторичных частиц, образовавшихся от протона 100 ТэВ.



Такой метод дает возможность создания регистрирующей аппаратуры относительно небольшого веса при значительной величине ее светосилы с перспективой длительного времени экспозиции и проведения исследований КЛ в широком (несколько порядков) энергетическом диапазоне единой методикой. Авторы назвали эту методику KLEM (kinematic light - weight energy meter), чтобы подчеркнуть главное его достоинство - измеритель энергии маленького веса. И добавили слово кинематический, чтобы отразить суть метода. Этот метод является основным для измерения энергии первичной частицы в проекте НУКЛОН. Расчеты и тестовые эксперименты на ускорителе показали, что точность определения энергии составит около 50% с учетом априорного спектра космических лучей.


Конструкция прибора НУКЛОН.


Как же надо сконструировать прибор, чтобы он смог при таком маленьком весе решить поставленные научные задачи? Во-первых, как уже говорилось, нужно чтобы прибор измерял энергию частиц по методике KLEM, во-вторых, необходимо измерить заряд частицы, в-третьих, необходимо измерить угол прилета частицы, в четвертых, надо отличить полезный сигнал от частицы с интересующей нас пороговой энергией 1 ТэВ, от шумового сигнала. То есть, надо создать систему быстрого триггера, которая поможет отделять основную массу фоновых сигналов и передавать на Землю главным образом полезные сигналы. И, наконец, прибор должен быть достаточно большой площади, чтобы на него упало как можно больше частиц. Обычно установки, удовлетворяющие таким критериям использующие методику ИК, весят не менее 2-3 тонны, а прибор НУКЛОН весит не более 165 кг.

Для того чтобы удовлетворить всем требованиям пришлось применять самые новейшие технологии, а именно микростриповые и падовые кремниевые детекторы, которые уже довольно давно используются для анализа процессов множественного рождения на крупнейших ускорителях частиц.

Принцип действия кремниевых детекторов основан на сборе электрического заряда, возникшего в кристалле (в эксперименте НУКЛОН используются кристаллы с габаритами 62620.34 мм3) высокоомного кремния после прохождения заряженной частицы. Сигнал пропорционален ионизационным потерям частицы в кремнии, которые, в свою очередь пропорциональны квадрату ее заряда. Для релятивистской частицы, а в начале каскада большинство частиц релятивистские, ионизационные потери в кремнии практически не зависят от ее энергии, т.е. сигнал в кристалле будет пропорционален количеству прошедших через него частиц. Сбор заряда с детектора можно осуществлять либо со структур в виде полосок проходящих вдоль детектора (стрипов), либо со структур в виде прямоугольников – падов. Каждый элемент таких структур в электрическом отношении является независимым датчиком, и по его отклику можно определить место, где частица пересекла кристалл. Регистрирующие плоскости в спектрометре НУКЛОН состоят из набора таких кристаллов: для системы измерения энергии регистрирующая плоскость состоит из 72 шт. стриповых детекторов, для системы измерения заряда регистрирующая плоскость состоит из 64 шт. падовых детекторов. Стрипы в соседних плоскостях располагаются во взаимно ортогональных направлениях, таким образом можно определять две координаты на плоскости, исследуя пространственное распределение частиц в начале каскада. Шаг размещения стрипа в используемых детекторах ~0.5. мм.

На приведенном выше рисунке хорошо виден один из очень неприятных эффектов, который назван эффектом обратного тока. Часть частиц, образовавшихся в ходе ядерных и электромагнитных взаимодействий в каскаде, летит назад по отношению к направлению прихода первичной частицы. Эти частицы могут попасть в детектор заряда, имитируя увеличение заряда. Величина обратного тока очень сильно растет с ростом энергии и зависит от объема вещества в установке. Снижение искажений, связанных с воздействием обратного тока на детектор заряда, достигается путем разбиения плоскости зарядового детектора на пады. Секционирование детектора уменьшает вероятность одновременного попадания в чувствительную часть детектора исследуемой частицы и фоновой, причем использование нескольких слоев детекторов снижает эту вероятность еще в несколько раз. В проекте НУКЛОН каждый кристалл разделен на 16 падов с площадью ~2.5 см2 каждый. Расчетное, экспериментально подтвержденное в ускорительном эксперименте, значение точности в зарядовых измерениях составляет несколько процентов.

В целом научная аппаратура НУКЛОН представляет собой «слоистую» структуру с габаритными размерами активной части спектрометра ~500х500х250 мм3.

В состав научной аппаратуры входит:

4 слоя падовых (размер пада ~2.5 см2) кремниевых детекторов, предназначенных для прецизионного измерения заряда первичной частицы;

6 слоев микростриповых кремниевых детекторов (шаг стрипа ~450 мкм), предназначенных для определения: энергии первичной частицы, локализации места первого неупругого взаимодействия, траектории прихода в установку первичной частицы;

6 слоев позиционно чувствительных сцинтилляционных детекторов, предназначенных для выработки триггерного сигнала.

Схема установки приведена на рисунке ниже. И на нем условно изображены две частицы («высокой» и «низкой» энергий), которые провзаимодействовали в мишени, и зарегистрированны во всех 16 детектирующих слоях.





Принципиальная схема детектора НУКЛОН.


В относительно тонкой мишени частица испытывает ядерное взаимодействие, образуются вторичные γ-кванты (от распада 0 и -мезонов) и заряженные однозарядные частицы (в основном пионы). На некотором расстоянии от мишени расположено 2 слоя вольфрама по 0.7 см. При прохождении через них практически все γ-кванты дают начало электромагнитному каскаду. Слои координатно-чувствительных детекторов, способных фиксировать как число, так и распределение пространственной плотности заряженных частиц около трека первичной частицы, расположены под каждым из слоев вольфрама для определения энергии частицы. Еще два слоя микростриповых детекторов находится между мишенью и конвертором. Они совместно с остальными слоями позволяют с достаточной точностью восстанавливать направление трека первичной частицы и позволяют отбирать события, где место первого взаимодействия произошло в мишени.


Ниже приведен общий вид детектора НУКЛОН.





Общий вид детектора НУКЛОН.

Этот прибор будет и собирать информацию о КЛ в течение 5 лет, что позволит решить следующие научные задачи.


Научные задачи.

1) Исследование энергетических спектров различных элементов в космических лучах в области энергий 1-1000 ТэВ, проверка гипотезы наличия неоднородностей (колен) в спектрах различных ядер КЛ, что может свидетельствовать о смене источников ускорения в указанной области энергий.

2) Проверка гипотезы разных наклонов спектров различных компонент, которая предполагает специфические места ускорения тяжелых элементов в Галактике, где сосредоточено повышенное количество тяжелых элементов.

3) Исследование энергетической зависимости отношений вторичных ядер Li, Be, B к ядрам СNO и группы суб–Fe к Fe, что дает возможность измерения энергетической зависимости коэффициента диффузии, а значит, позволяет получить переход от наблюдаемых у Земли спектров КЛ к истинным спектрам в источниках для различных компонент и установить наличие или отсутствие процессов доускорения КЛ по мере их распространения до Земли.

4) Исследование тонкой структуры представленности отдельных элементов с целью подтверждения или опровержения гипотезы, что на начальном этапе ускорения ускоряются космические пылинки.

5) Исследование возможной пространственной анизотропии отдельных групп ядер, что может быть связано с наличием близкого источника КЛ.


Преимущества эксперимента НУКЛОН по сравнению с другими экспериментами


Не смотря на маленький вес прибора, такой эксперимент имеет целый ряд преимуществ перед другими проектами использующие тонкие калориметры.

  • В настоящий момент суммарный планируемый фактор экспозиции эксперимента НУКЛОН превышает почти в 10 раз имеющиеся эксперименты.
  • Исследование в космосе доли вторичных к первичным ядер имеет принципиальное преимущество по сравнению с баллонными экспериментами, в которых остаточная атмосфера составляет около 6 г/см2, что в десять раз превышает толщу вещества, проходимого ядрами в Галактике при энергии около 1 ТэВ.
  • Поскольку прибор почти не имеет тяжелого вещества, то ожидаемый обратный ток, искажающий зарядовое разрешение на порядки меньше, чем в обычных тонких калориметрах и можно ожидать прецизионное измерение тонкой структуры химсостава ГКЛ.
  • Прибор дает возможность проведения мониторинга заряженных частиц с энергией 1 ТэВ в условиях отсутствия искажающего влияния атмосферы.