Свердловская область

Вид материалаРеферат

Содержание


Приложение 2. Обзор публикаций по использованию низкопотенциального тепла с применением тепловых насосов
Институт теплофизики СО РАН
Институт теплофизики СО РАН
Применение тепловых насосов в кольцевом контуре
Принцип работы
Принцип утилизации тепла
Преимущества климатической системы, основанной на кольцевой схеме водовоздушных тепловых насосов.
Энергетическая эффективность.
Простота обслуживания.
Автоматизация и диспетчеризация.
Примеры использования кольцевого контура в России
Цель проекта
Подобный материал:
1   ...   5   6   7   8   9   10   11   12   13

Приложение 2. Обзор публикаций по использованию низкопотенциального тепла с применением тепловых насосов


Нетрадиционная энергетика и энергоресурсосбережение в России

С.В. Алексеенко, журнал «Энергосбережение» №1 2008

Несомненно, наиболее важным устройством нетрадиционной энергетики и энергоресурсосбережения является тепловой насос.

Особенность теплового насоса состоит в том, что произведенное тепло всегда больше подведенной энергии от энергоисточника высокого потенциала. Суть заключается в том, что тепло производится не только за счет энергии энергоисточника (газа, угля, электрической энергии или пара), но и за счет дополнительной тепловой энергии, отбираемой от низкопотенциального источника, т.е. источника с более низкой температурой (геотермального источника, жидких промышленных или бытовых стоков, воздуха, грунта, реки). В дополнительно выпускаемых установках экономия топлива составляет 20-70 %. Возможный диапазон температур низкопотенциального источника очень широкий – от 80 до -17С.

Технический потенциал энергосбережения при использовании низкопотенциального тепла по самой скромной оценке составляет в России – 115 млн. т у.т.

Во многих развитых странах тепловые насосы являются основой энергосберегающей политики. Так, в Швеции 22 % домов (350 тыс.) обогреваются тепловыми насосами. В мире насчитывается около 40 млн. тепловых насосов, в то время как в России всего 140. Планируется, что к 2020 году вклад тепловых насосов в теплоснабжение в развитых странах составит 75 %. В России тепловым насосам не уделяется никакого внимания. Основные разработчики и производители отечественного оборудования располагаются в г. Новосибирске. Научное сопровождение выполняет Институт теплофизики СО РАН. ООО «Теплосибмаш» производит абсорбционные машины. На сегодня выпущено 6 тепловых насосов и 7 холодильных машин общей мощностью 23 МВт. ЗАО «Энергия» и СКБ «ИПИ» выпускают парокомпрессионные тепловые насосы и холодильные машины мощностью до 5 МВт, именно они обеспечили упомянутый выше выпуск тепловых насосов в России.


Разработки Института теплофизики СО РАН в сфере использования тепловых насосов

Тепловые насосы компрессионного типа, или термотрансформаторы, - это экологически чистые компактные фреоновые установки, позволяющие     получать тепло для отопления и горячего водоснабжения за счет   использования тепла низкопотенциального источника.

В качестве источника низкопотенциального тепла могут быть использованы: промышленные и очищенные бытовые стоки; вода технологических циклов и естественных водоемов; тепло термальных вод; тепло, получаемое при очистке дымовых газов и т.п. Cтоимость тепла, выработанного тепловыми насосами (в зависимости от эффективности работы), в 1,6-3,7 раза ниже стоимости тепла централизованного теплоснабжения.

Параметры

НТ-300
(поршневой)


НТ-500
(винтовой)


НТ-1000
(винтовой)


НТ-3000
(винтовой)


Тепловая мощность, кВт













для воды 8 С

300

500

1000

2500

для воды 25 С

400

800

1600

4000

Потребляемая эл. мощность
(для воды 8 С), кВт.ч

90

150

300

630

Габариты, м

4,5 x 1,8 x 1,7










- компрессорного агрегата




2,8 x 2,2 x 1,1

4,0 x 1,5 x 2,3

5,2 x 2,0 x 3,0

- агрегата
конденсаторно-испарительного




3,9 x 2,7 x 1,7

4,9 x 2,1 x 1,5

5,0 x 1,7 x 3,3

Масса, кг

4300

9700

15000

22000

Разработчики

Институт теплофизики СО РАН
к.т.н. Петин Ю. М.
 

фирмы:
ЗАО “Энергия”
ООО “Теплонасос”




Созданы опытно-промышленные парокомпрес-сионные тепловые насосы нового поколения для получения горячей воды для систем отопления и горячего водоснабжения (+55 - +80°С ) с одновременной выработкой умеренного холода (+2-+10°С) для систем кондиционирования и охлаждения различных технологических сред. При необходимости эти машины могут применяться в качестве холодильных машин. Разработка удостоена Большой золотой медали Сибирской Ярмарки в номинации “Энерго- и ресурсосбережение”.

Начато производство тепловых насосов теплопроизводительностью от 30 до 1000 кВт. Проектирование теплонасосных станций, изготовление, поставку, монтажные, пусконаладочные работы и сервисное обслуживание осуществляет ООО “СКБ ИПИ” на коммерческой основе по индивидуальным заказам.

Разработчики

Институт теплофизики СО РАН,

АНО “ Институт перспективных исследований”

Научный руководитель

академик РАН Накоряков В.Е.

ООО “СКБ ИПИ”

к.т.н. Борчевкин Ю.С.

 



Созданы промышленные абсорбционные бромистолитиевые тепловые насосы (АБТН) и холодильные машины нового поколения для нагрева, охлаждения воды и других сред.

В машинах существенно снижены металлоемкость, габаритные размеры и увеличен срок службы (не менее 20 лет).

Начато промышленное производство машин различных типо-размеров:

- холодильных машин для охлаждения воды от 6°С и выше, на различных видах греющих источников (пар, горячая вода, топливо), холодопроизводительностью от 250 до 5000 кВт;

- тепловых насосов для нагрева воды до 55-80 °С, с использованием сбросной низкопотенциальной теплоты (20-40 °С) и различных видов греющих источников, теплопроизводительностью от 500 до 5000 кВт.

Поставку машин и инженерное обеспечение осуществляет "Теплосибмаш" на коммерческой основе по индивидуальным заказам.

Источник информации: ссылка скрыта


ссылка скрыта

Тепловые насосы в основном ассоциируются в России с геотермальным теплом. Многие еще не знают, что на западе уже два десятка лет тепловые насосы активно применяются в так называемом кольцевом контуре. Такая система отлично зарекомендовала себя, как эффективное конкурентоспособное решение для зданий от средней и большой площади. Среди наиболее выгодного применения систем кольцевого контура: больницы, гостиницы, торговые площади и офисные здания. Кроме того, кольцевая система часто применяется в жилых многоэтажных зданиях.

Принцип работы

В кольцевую систему тепловых насосов входят сами насосы, количество которых не ограничено и определяется только оптимизацией зон климатического регулирования. Кроме того, в систему входит источник низкопотенциального тепла, которым может служить газовый или электро-котел или теплоцентраль. Также входит градирня для сброса излишков тепла в атмосферу. Теплоносителем является вода температурой 25С. Все тепловые насосы объединены в одну систему (контур). Через все тепловые насосы циркулирует вода за счет работы циркуляционного насоса.

При работе теплового насоса в режиме охлаждения, избыточное тепло из зоны передается в водяной контур, а в режиме отопления тепло забирается из контура для обогрева помещения.

Все тепловые насосы работают как на тепло, так и на холод в любое время года, обеспечивая оптимальный комфорт климатических зон.

Принцип утилизации тепла

Кольцевая система наиболее эффективна в многофункциональных зданиях типа гостиниц и торговых центров. Избыточное тепло из кухонь прачечных и торговых центров не выбрасывается в атмосферу, а утилизируется в других помещения требующих обогрева. В переходные периоды (весна, осень) во всех зданиях тепло перекачивается с охлаждаемого фасада к фасаду обогреваемому. В таких случаях энергия тратится только на перекачку тепла из расчета 4-5кВт тепла на 1кВт электроэнергии. Утилизируется все: тепло компьютеров, холодильных машин, тепло, выдаваемое освещением и радируемое людьми. Тепло может быть передано даже во времени. То есть тепло, удаленное из здания днем может быть использовано ночью для его обогрева.

Преимущества климатической системы, основанной на кольцевой схеме водовоздушных тепловых насосов.
  1. Надежность. Достигается за счёт распределения функций кондиционирования по многим расположенным по месту использования агрегатам. Выход из строя одного теплового насоса не затрагивает работу системы в целом. Срок службы тепловых насосов 20 - 25 лет.
  2. Комфорт. Индивидуально заданные параметры микроклимата обеспечиваются в каждой зоне (комнате/офисе) в течение всего года, включая весну и осень, когда теплосеть на отопление не работает. Единый источник воздуха оптимальной температуры предотвращает образование сквозняков.
  3. Энергетическая эффективность. Кольцевой водяной контур значительную часть времени перекачивает тепло из зон с его избытком в зоны с его недостатком. При этом оптимально используются внутренние тепловыделения (например, от компьютеров, кухонь, людей), а также солнечная радиация. Использование радиаторного отопления в дежурно-резервном режиме ночью и в не рабочие дни позволяет отключать все или часть (если часть помещений используется) тепловых насосов и поддерживать безопасный режим эксплуатации здания при сниженной температуре воздуха.
  4. Простота обслуживания. Тепловые насосы полностью законченные изделия. Их обслуживание сводится только к периодической смене воздушных фильтров (на практике раз в год). За малыми исключениями в здании используются однотипные тепловые насосы.
  5. Автоматизация и диспетчеризация. Современная система автоматизации может обеспечить единообразное управление всеми тепловыми насосами, приточными и вытяжными установками, ИТП и т.д. При этом обеспечивается планирование работы каждого насоса, а также энергоэффективное управление водяным контуром. Система управления также может строиться по распределённому принципу, что определяет её высокую надёжность Система автоматизации не обязательна, но еще больше повышает надежность и энергоэффективность системы.

Примеры использования кольцевого контура в России

В 1990м году в Москве французской фирмой была построена гостиница высокого класса на 350 номеров. В этой гостинице была применена схема кольцевого контура. В системе более четырехсот тепловых насосов, которые работают по сей день. Простота обслуживания и эффективность работы системы получает наилучшие отклики от владельцев и эксплуатирующего персонала гостиницы. Несмотря, на успех эксплуатации кольцевой схемы в России до 2005 года не было введено в строй ни одной подобной системы.

Компании Аэроклимат совместно с фирмой производителем тепловых насосов ClimateMaster США удалось продвинуть систему на рынки ряда регионов. За полгода было закончено 3 объекта в Краснодарском крае разного назначения и площади. Ведется работа над пятью объектами в других регионах. В проектировочной стадии имеется еще ряд объектов.

В этом году объем Российского рынка тепловых насосов для систем кольцевого контура должен достичь десяти миллионов долларов США.




Офисный и гостиничный центр в г. Краснодар
  • 10000 кв. м.
  • Отопление
  • Охлаждение
  • 26 мощных установок
  • Общая мощность на 1000 кВт




Средняя школа №2 г. Усть-Лабинск Краснодарский Край
  • 3000 кв. м.
  • Отопление
  • Охлаждение
  • Теплоцентраль 60°С







Палас Культуры (первая часть проекта)
  • Отопление
  • Охлаждение
  • Мощность 1372 кВт

Источник информации: www.progressenergo.ru

Тепло канализационных стоков

Холодная вода поступает зимой в здание с температурой 5-8°С. Затем она прогревается в трубопроводах, бачках, нагревается, смешиваясь с горячей водой, и покидает здание с температурой 20-30°С. Канализационные стоки уносят с собой очень большое количество тепла. Современные теплонасосные установки позволяют утилизировать тепло канализационных стоков и приблизить их температуру к температуре поступающей воды.

В качестве примера утилизации тепла канализационных стоков можно привести систему DHC разработанную в Японии и использующую необработанные сточные воды как источник нагрева и охлаждения воды.

Впервые в Японии, в районе Koraku 1-chome в Токио, для теплоснабжения района установлена система DHC, использующая тепло необработанных сточных вод. Как ожидается, использование тепла сточных вод уменьшит потребление энергии и выброс парниковых газов. Применение этой системы уменьшает потребление энергии на 20%, выброс CО2 и NOx на 40 и 37% соответственно.

Сточные воды уже использовались в других проектах как источник низкопотенциального тепла для тепловых насосов. Однако проект в Токийском районе Koraku 1-chome уникален тем, что впервые в Японии используются неочищенные, необработанные сточные воды; позволяет использовать тепловые насосы не только на очистных станциях, но и на станциях перекачки и канализационных сетях.

В дальнейшем ожидается значительное увеличение использования сточных вод в качестве источника низкопотенциального тепла.

Цель проекта

Объем канализационных стоков, производимых в огромных количествах большими городами, практически не изменяется в течение года. Температура сточных вод ниже температуры наружного воздуха в летнее время и выше в зимнее. Это делает их идеальным источником низкопотенциального тепла для использования в тепловых насосах. По некоторым оценкам, в городские коммуникации вместе со сточными водами сбрасывается около 40% использованного тепла. Цель проекта заключается в том, чтобы использовать этот огромный источник тепла для районной системы DHC, работающей на тепловых насосах, экономя значительное количество энергии и существенно сокращая выбросы NOx и CО2.

На DHC-станции смонтированы 3 тепловых насоса, 2 с охлаждающей способностью 10,5 МВт и нагревающей способностью 12,8 МВт каждый и 1 тепловой насос с охлаждающей способностью 3,9 МВт и нагревающей 5 МВт. Этот насос используется периодически, когда возникает необходимость подачи горячей и холодной воды одновременно. Расход сточных вод, проходящих через DHC-станцию, составляет до 129 600 м3 в день. Станция охлаждает воду до +7°C и нагревает до +47°C и обеспечивает этой водой здание общей площадью 126 400 м2, подавая ее через тепловую сеть, выполненную по 4-трубной схеме, проложенную под землей на глубине 7-8 м.

Для выравнивания тепловой нагрузки и использования недорогого ночного электричества на станции установлены баки-аккумуляторы общим объемом 1 520 м3.

С апреля 1995 по март 1996 года станция DHC обеспечила 37 741 ГДж тепловой энергии для охлаждения воды и 9 151 ГДж для получения горячей воды. В августе 1995 года коэффициент преобразования теплонасосной установки составил 4,3. В феврале 1996 года - 3,9.

Источник информации: ссылка скрыта