Учебно-методическое пособие представляет собой первую часть конспекта лекций по дисциплине «Компьютерные сети и системы»
Вид материала | Учебно-методическое пособие |
- Учебно-методическое пособие Санкт-Петербург 2001 удк 681. 3 Бобцов А. А., Лямин, 1434.37kb.
- Конспект лекций по дисциплине «некоммерческий маркетинг», 471.19kb.
- Для освоения курса лекций по дисциплине «Ветеринарная радиология» иподготовки к семинарским, 711.94kb.
- Учебно-методическое пособие по дисциплине «Налоги и налогообложение», 2006 г. Институт, 99.9kb.
- Учебно-методическое пособие по дисциплине «Управление персоналом», 2006 институт международной, 765.43kb.
- Методические рекомендации по разработке краткого конспекта лекций по дисциплине, 99.01kb.
- Учебно методическое пособие Архангельск 2012, 824.52kb.
- Экзаменационные вопросы к курсу лекций «Сети ЭВМ и телекоммуникаций», 32.32kb.
- Краткий курс лекций по философии учебно-методическое пособие для студентов всех специальностей, 2261.57kb.
- Учебно-методическое пособие Издательство Москва, 6471.08kb.
Сетевые службы
Для конечного пользователя сеть – это не компьютеры, кабели, концентраторы и даже не информационные потоки. Для него сеть – это, прежде всего, тот набора служб/услуг, с помощью которых он получает возможность просмотреть список имеющихся в сети компьютеров, прочитать удаленный файл, распечатать документ на разделяемом принтере, послать почтовое сообщение и т.д. Такие сетевые службы называются прикладными.
Кроме собственно обмена полезными данными, сетевые службы должны дополнительно решать и специфические задачи: обеспечивать непротиворечивость нескольких копий данных, размещенных на нескольких машинах (служба репликации); организовывать параллельное выполнение задачи на нескольких машинах (служба вызова удаленных процедур); выполнять административные функции (служба администрирования сети) и др. Сетевые службы, решающие служебные задачи, называются системными.
Реализация системных и прикладных служб осуществляется программными средствами. Основные службы (файловая и печати) обычно встроены в сетевую операционную систему, а вспомогательные (баз данных, факса, голоса) службы реализуются системными сетевыми приложениями или утилитами, работающими в тесном контакте с сетевой ОС.
Топологии физических и логических связей в сетях
Сети различаются по многим признакам:
- по скорости передачи;
- по типу используемого кабеля;
- по физическому расположению кабеля;
- по формату пакетов (кадров).
Для классификации сетей широко используют два термина: архитектура и топология. Архитектура сети описывает конкретный стандарт сети, например, Ethernet, Token Ring, которые могут иметь подтипы, например Ethernet 10Base-2. Топология сети определяет физическое расположение кабеля сети или логическую связь информационных потоков в сети.
Топология сети – это способ организации физических/логических связей в сети, представленная в виде графа.
Таким образом, различают физическую топологию, определяющую правила физических соединений узлов (прокладку реальных кабелей), и логическую топологию, определяющую направление потоков данных между узлами сети. Конфигурация физических связей определяется электрическими соединениями компьютеров между собой и может отличаться от конфигурации логических связей между узлами сети. Логическая и физическая топологии сети относительно независимы друг от друга.
а) топология звезды | б) кольцевая топология |
в) шинная топология | г) ячеистая топология |
Рис.7. Типы физических топологий сети.
Существуют четыре основные физические топологии сетей: шина, кольцо, звезда и ячеистая. Иногда эти топологии комбинируются для получения гибридной топологии (рис.7).
Шинная топология – самая простая и наиболее часто использовавшаяся в начале развития сетей. Основной недостаток шинной топологии состоит в том, что обрыв кабеля в каком-либо месте приводит к выходу из строя всей сети.
В кольцевой топологии узлы сети соединяются друг с другом по кольцу.
В топологии звезды каждый узел соединен с центром – соединительным модулем или концентратором, который действует как центральный узел связи всей сети.
Ячеистая топология – это наиболее отказоустойчивая топология. Каждый узел сети напрямую соединяется с остальными. Основное преимущество такой сети состоит в том, что она продолжает работать при отказе любого узла и обрыве любого кабеля (при обрыве кабеля данные могут быть перенаправлены по другому пути). Частным случаем ячеистой топологии является полносвязная топология, в которой каждый узел связан независимы линиями со всеми другими узлами сети. Этот вариант топологии является громоздким и неэффективным.
Гибридная/смешанная топология – это комбинация нескольких различных топологий. Гибридная топология наиболее популярна в глобальных сетях и сетях предприятий, в которых часто имеется основное/"становое" кольцо, к которому посредством маршрутизаторов подключаются остальные сети в форме звезды.
Во всех физических топологиях (за исключением полносвязной) возникает проблема совместного использования линий связи несколькими узлами сети.
В логической шине информация, передаваемая одним узлом, одновременно доступна всем узлам, подключенным к одному сегменту. Логическая шина реализуется на физической топологии шины (Ethernet на коаксиальном кабеле), звезды (Ethernet на витой паре) др.
В логическом кольце информация передается последовательно от узла к узлу по кольцу и реализуется на физической топологии шины (Arcnet), кольца или звезды (Token Ring).
Аналогично определяются другие логические топологии.