Оптимізація балансу АКБ "Правекс-Банк" з метою покрашення його фінансових показників
Дипломная работа - Банковское дело
Другие дипломы по предмету Банковское дело
?ьому кроці потрібна інформація, отримана на m + 1 попередніх кроках. Такі методи називаються багатокроковими. Методи ж Ньютона і градієнтний є одно кроковими: для обчислення xn+1 вимагається знати поведінку функції і її похідних тільки в точці xn.
Були так досконало розглянули усі можливі ситуації при використанні метода Ньютона, бо саме на нього і буде опиратися наша оптимізація пошуку найдешевшого переказу через Microsoft Excel „Пошук рішення”. Та найдешевша траса не завжди є оптимальною, бо крім вартості необхідно враховувати багато нечітких, проте, з економічної точки зору, більш вагомих чинників, як то досвід, забаганка клієнта та інше в залежності від пріоритетів банку. Тому щоб перейти до суто математичної оптимізації, на початку необхідно пройти етап непараметричної статистика, яка робить можливим вищезазначені процеси.
Для того, щоб вивчати ці процеси, а потім ефективно керувати ними, необхідно знати ступінь впливу кожного фактора на процес та взаємний звязок факторів між собою.
Основні знання про обєкти керування та їх особливості найкраще відображаються на математичних моделях, в побудуванні яких приймають участь методи математичної статистики. Ці методи, що базуються на класичній теорії ймовірності, використовуються для обробки кількісних оцінок факторів, і вимагають прийняття ряду припущень, зо не завжди відповідають природі обєктів або явищ, що досліджуються.
Переваги непараметричних методів :
1. Методи потребують небагато припущень відносно властивостей генеральних сукупностей. Зокрема, вони не потребують традиційного припущення щодо нормального розподілення.
2. Непараметричні методи часто простіші до застосування, ніж їх традиційні прототипи.
3. Як правило, ці методи добре розуміються та легко інтерпретуються користувачами.
4. Непараметричні методи видаються корисними також в тих випадках, коли досліджуванні змінні не є кількісними, тобто не відображаються в кількісних шкалах, а відображаються тільки в шкалі переваг.
5. Непараметричні методи за відсутністю порушень припущень лише трохи менш ефективні, ніж їх традиційні прототипи, що розроблені для нормального розподілення. Зате за порушенням нормальності вони не мають конкурентів.
Непараметрична статистика являє собою порівняно молодий напрямок математики. Її вік не перевищує 60-ти років.
Непараметрична статистика має великі можливості щодо застосування до економічних та соціальних досліджень. По-перше, можна упевнено припустити, що більшість економічних та соціальних показників оцінюються за статистичними даними, що не підкоряються нормальному розподіленню. По-друге, серед факторів, що впливають на хід економічних та соціальних процесів, багато таких, що не можуть бути виміряними кількісно. Їх можна оцінити лише зробивши ранжирування за убуванням або зростанням якоїсь якості, тобто представити у вигляді рангів.
2.2 Застосування теорії Марковіца для формування банківських активів з точки зору оптимізації прибутку
В наш час банківський ринок пропонує все більше і більше різноманітних видів кредитних пакетів. Завдяки засобам телекомунікацій, видача кредитів стала міжнародним явищем. Кожен тип кредиту має свою доходність, яка з часом коливається, тому вибір тих типів кредитів, які варто включити у власні активи, складає певну проблему.
Ця проблема вирішується за допомогою найбільш відомої моделі портфелю цінних паперів Марковіца, для якої може бути знайдено оптимальне рішення за допомогою методів лінійного програмування для:
- Максимуму доходів при заданому значенні ризику
, (2.21)
- Мінімуму ризику при заданому значенні доходності
, (2.22)
де xi частка капіталу i-го виду, di- середня прибутковість i-го виду у відсотках в розрахунку на одну грошову одиницю, mp задана середня прибутковість, vij ковариація доходностей i го та j го видів, vр ковариація, якою вимірюється ризик, rp задана середня коваріація.
Ця модель широко застосовується зараз і для розрахунку ефективності інвестиційних проектів. Але це використання провадиться без критичного аналізу можливої межі застосування моделі виду (2.21)-(2.22).
В звязку з вищесказаним, виникають наступні задачі:
- виявлення можливості використання матриці коефіцієнтів кореляції
, (де середнє квадратичне відхилення доходності) замість матриці коваріації. Коефіцієнт кореляції є безрозмірним і завжди коливається в межах [1], що робить його значно зручнішим для аналізу ситуації та визначення допустимого рівня ризику, аніж коваріація. Особливо це стосується моделі (2.2.1), де потрібно задавати певний, наперед визначений рівень ризику;
- проведення аналізу по типу матриці коваріації для якого типу це рішення можливе чи існує?
- і останнє, чи не можна спростити моделі (2.21)-(2.22) і звести їх у єдину модель виду
, (2.23)
щоб не задумуватися над проблемою визначення допустимого рівня ризику для кожного портфелю. В (2.23) якості цільової функції вибрано відношення, в якому середній ризик поділено на середню доходність портфелю. Очевидно, що така цільова функція має прагнути мінімуму. Назвемо таку модель “ризиково-доходною”
Рішення поставлених задач виконувалося із застосуванням функцій СЛУЧМЕЖДУ, “Ковариация”, “Корелляция” та “Поиск решения” електронних таблиць Excel.
На підставі експ?/p>