Методика решения задач на построения в стереометрии

Курсовой проект - Педагогика

Другие курсовые по предмету Педагогика

QR.

Решение:

 

 

 

 

 

 

 

Задача 5.

Дано :Точки P, Q и R взяты на поверхности параллелепипеда ABCDA1B1C1D1 следующим образом: точка P лежит на грани CC1D1D, точка Q - на ребре B1C1, а точка R - на ребре AA1.

Построить: сечение параллелепипеда плоскостью (PQR).

Решение:

 

 

Задача 6.

Дано: На рёбрах A1B1 и DD1 параллелепипеда ABCDA1B1C1D1 взяты соответственно точки P и S, а в гранях DD1C1C и AA1D1D соответственно точки Q и R.

Построить: сечение параллелепипеда плоскостью, проходящей через точку S параллельно плоскости PQR.

Решение:

 

3.Самостоятельное решение задач

Каждый ученик получает карточку с заданием. На этом же листе выполняется построение сечения и описание этого построения. Проверку заданий можно осуществить на уроке в УМК Математика, 5-11 классы. Практикум

Задание1-7: построить сечение, проходящее через точки M,K,L.

Задание 8: построить сечение, проходящее через точку P и прямую KL.

Задание 9: построить сечение, проходящее через точку K и прямую PQ.

 

"> Задание 1

">Задание 2

">Задание 3

">Задание 4

">Задание 6

">Задание 7

">Задание 8

Решения заданий в УМК Математика, 5-11 классы. Практикум

 

 

 

 

Заключение

 

Систематическое изучение геометрических построений необходимо в школьном курсе, так как в процессе изучения задач они концентрируют в себе знания из других областей математики, развивают навыки практической графики, формируют поисковые навыки решения практических проблем, приобщают к посильным самостоятельным исследованиям, способствуют выработке конкретных геометрических представлений, а также к более тщательной обработке умений и навыков.

В этой курсовой работе были рассмотрены роль и место построений в школьном курсе, а так же была рассмотрена методика решения задач на построение в стереометрии и основные геометрические построения.

 

Литература

стереометрия геометрическое посторенние

1.Александров, И.И. Сборник геометрических задач на построение с решениями / И.И.Александров. - М.: Учпедгиз,1954.

2.Аргунов, Б.И. Элементарная геометрия: учеб. пособие для пед. ин-тов / Б.И. Аргунов, М.Б. Балк. - М.: Просвещение, 1966.

3.Коновалова, В.С. Решение задач на построение в курсе геометрии как средство развития логического мышления / В.С. Коновалова, З.В. Шилова // Познание процессов обучения физике: сборник статей. Вып.9. - Киров: Изд-во ВятГГУ, 2008. - С. 59-69.

4.Мисюркеев, И.В. Геометрические построения. Пособие для учителей / И.В.Мисюркеев. - М: Учпедгиз, 1950.

5.Понарин, Я.П. Элементарная геометрия: В 2 т. - Т.2: Стереометрия, преобразования пространства / Я.П.Понарин - М.: МЦНМО, 2006.

6.Прасолов, В.В. Задачи по стереометрии. Ч.1 / В.В. Прасолов. - М.: Наука, 1991.

7.Саранцев, Г.И. Обучение математическим доказательствам и опровержениям в школе / Г.И. Саранцев. - М.: ВЛАДОС, 2005.

8.Шарыгин, И.Ф. Задачи по геометрии (Стереометрии) / И.Ф. Шарыгин. - М.: Наука, 2009.