Метод векторів та його застосування

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

/p>

Лінійна залежність векторів

 

Означення. Система векторів називається лінійно залежною, якщо існують такі числа , ,…, серед яких хоча б одне відмінне від нуля, що ++… += 0. / 4/

Якщо ж рівність /4/ справджується тільки при ==…== 0, то дана система векторів називається лінійно незалежною.

Сума ++… + називається лінійною комбінацією векторів .

Розглянемо деякі властивості лінійної залежності векторів, які будуть потрібні надалі.

Властивість 1. Система векторів лінійно залежна тоді і тільки тоді, коли хоча б один з векторів є лінійною комбінацією інших векторів цієї системи.

Доведення.

1. Необхідність. Нехай система векторів лінійно залежна. Тоді існують такі числа , ,…, , що ++… += 0 /5/

При цьому принаймні одне з чисел , ,…, не дорівнює нулю. Нехай, наприклад, 0. Тоді з рівності /5/ дістанемо:

 

= .

 

Отже, вектор є лінійною комбінацією векторів , ,…, ,…, .

  1. Достатність. Нехай у даній системі векторів вектор

    є лінійною комбінацією інших векторів:

  2.  

=++… +++… +.

 

Цю рівність можна записати так:

 

++… + + (-1) ++… += 0.

 

У цій рівності коефіцієнт біля відмінний від нуля, тому дана система векторів лінійно залежна.

Властивість 2. Якщо частина даної системи векторів лінійно залежна, то і вся система векторів лінійно залежна.

Властивість 3. Якщо система векторів лінійно незалежна, то будь-яка її частина також лінійно незалежна.

Ця властивість безпосередньо випливає із властивості 2, бо якби деяка частина даної системи векторів була лінійно залежною, то і вся система була б лінійно залежною.

Властивість 4. Система лінійно незалежних векторів не містить нульового вектора.

Якщо в деякій системі векторів є нульовий вектор: , , то

виконується рівність 1* + 0* +… + 0* =0. 10, тому така система є лінійно залежною, а, отже, система лінійно незалежних векторів не може містити нульового вектора.

Для системи двох і трьох векторів поняття лінійної залежності тісно повязане з колінеарністю і компланарністю векторів. Справедливі такі теореми.

 

Теорема 1. Два вектори і лінійно залежні тоді і тільки тоді, коли вони колінеарні.

Доведення.

1. Необхідність. Нехай система векторів , лінійно залежна. Тоді за
властивістю 1 один із векторів лінійно виражається через другий: = ?,
звідки випливає, що вектори і колінеарні.

2. Достатність. Нехай вектори і колінеарні. Тоді існує таке число ?, що = ? . Із властивості 1 випливає, що вектори і лінійно залежні. Теорему доведено.

Теорема 2. Система трьох векторів , , лінійно залежна тоді і тільки тоді, коли ці вектори компланарні.

Доведення.

1. Необхідність. Нехай система векторів , , лінійно залежна. Тоді за властивістю 1 один із векторів є лінійною комбінацією інших векторів. Нехай, наприклад, = ?+?. Із означення суми векторів випливає, що вектори , ?, ? компланарні, а тоді і вектори , , будуть компланарними, бо || ?, || ?.

2. Достатність. Нехай вектори , , компланарні. Якщо ||, то за попередньою теоремою вектори , лінійно залежні, а за властивістю 2 лінійно залежними будуть і вектори , , . Якщо ж не ||, то за теоремою про розклад вектора за двома не колінеарними векторами = ?+?. То за властивістю 1 система векторів , , лінійно залежна. Теорему доведено

4. Координати вектора

 

Нехай (, , ) деякий базис простору , довільний вектор цього простору. За теоремою про розклад вектора за трьома некомпланарними векторами існують єдині числа , , такі, що

= + + .

Коефіцієнти , , розкладу вектора за базисними векторами називаються координатами вектора в даному базисі. При цьому число називається першою координатою, число другою, а число третьою.

Якщо вектор в даному базисі має координати ,, , то скорочено це записують так: (, , ) або .

Встановимо геометричний зміст координат вектора в даному базисі. Для цього відкладемо вектори , , і від деякої точки О простору (мал. 16): =, =, =, =.

 

 

Побудуємо паралелепіпед, ребра якого напрямлені вздовж прямих , , , а діагоналлю є відрізок OA. Тоді = + + , де = , = =, = .

Тому = ;

> 0, якщо і < 0, якщо ;

= ;

> 0, якщо і < 0, якщо .

Аналогічно, = ;

> 0, якщо і < 0, .

 

Отже, координата з точністю до знака дорівнює довжині відрізка виміряному в одиницях довжини . Знак же координати залежить від напрямку векторів і : > 0, якщо і < 0, якщо . Аналогічно зміст двох інших координат і .

Базисні вектори в самому базисі мають координати (1; 0; 0), (0; 1; 0), (0; 0; 1).

Аналогічно визначаються координати вектора в просторі . Базис цього підпростору складається з двох не колінеарних векторів. Нехай система векторів , є базисом підпростору . Тоді за теоремою про розклад вектора за двома не колінеарними векторами для будь-якого вектора із підпростору існують єдині числа , такі, що = + . Коефіцієнти , цього розкладу називаються координатами вектора в базисі (,). Число називається першою координатою, а число другою.

 

Аналогічним є і геометричний зміст координат вектора в підпросторі (мал. 17):

 

= + = + .

= ,

> 0, якщо і < 0, якщо ;

= ;

> 0, якщо і < 0, якщо .

 

Базисні вектори мають координати: (1; 0), (0; 1). Координати вектора в даному базисі повністю задають вектор.

Розглянемо властивості координат векторів.

 

Теорема