Метод векторів та його застосування

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

?ь цим векторам, збігаються. Тому , =. Звідси ,=, що й треба було довести.

2. Достатність. Нехай , =. Доведемо, що =. Якщо, , =, то , =, тобто і належать одній і тій же множині однаково напрямлених відрізків рівної довжини. А це означає, що =. Теорему доведено.

Наслідок. Два вектори, кожен з яких дорівнює третьому, рівні між собою.

 

Теорема 2. (теорема про відкладання вектора).

Від будь-якої точки простору можна відкласти вектор, рівний даному, і до того ж єдиний.

Доведення: Нехай даний вектор зображається напрямленим відрізком . Виберемо у просторі довільну точку О, сполучимо точку В з точкою О і позначимо середину відрізка ОВ через С (мал. 3). Проведемо

 

відрізок АС і відкладемо на його продовженні відрізок CM=АС. Чотирикутник АВМО є паралелограмом, бо його діагоналі точкою перетину діляться пополам. Звідси випливає, що промені АВ і ОМ однаково напрямлені, а відрізки АВ і ОМ рівні. Отже, ==.

 

 

Доведемо тепер, що цей вектор єдиний. Припустимо, що існує інший вектор =, відмінний від . Але ж і =, тому =. Отже, , =, тому точки M і збігаються, що суперечить припущенню. Тобто від точки O можна відкласти лише один вектор, рівний даному вектору . Теорему доведено.

Означення 2. Два вектори називаються протилежними, якщо вони протилежно напрямлені і мають рівні довжини. Вектор, протилежний до , позначається - (мал. 4). Очевидно, =-, (-)=.

 

Додавання векторів, властивості операції додавання векторів

 

 

Введемо операцію додавання векторів, яка відіграє важливу роль в векторній алгебрі.

Означення. Нехай задано два вектори і . Від деякої точки A відкладемо вектор =, потім від точки B відкладемо вектор =. Вектор = називається сумою векторів і і позначається так: =+ (мал. 5). Помітимо, що для знаходження двох неколінеарних векторів доводиться будувати трикутник. Тому вказане правило додавання векторів називають правилом трикутника. Це правило можна сформулювати так: для будь-яких трьох точок A, B і C +=, або: сумою векторів і євектор , який сполучає початок вектора з кінцем вектора при умові, що вектор відкладено від кінця вектора .

З цього правила випливає правило паралелограма: якщо вектори і відкладені від спільного початку O, =, = (мал. 6) і на них побудовано паралелограм OACB, то сумою векторів + є вектор =, який виходить з того ж початку і збігається з діагоналлю OC паралелограма.

Розглянемо властивості операції додавання векторів.

 

Властивість 1. Операція додавання векторів комутативна, тобто для будь-яких векторів і : +=+.

Доведення: За правилом трикутника маємо (мал. 7):

 

 

 

 

Властивість 2. Операція додавання векторів асоціативна, тобто для будь-яких векторів , , : (+)+= +(+)

Доведення: Візьмемо довільну точку A і від неї відкладемо вектори =, =, = (мал. 8). Тоді +=, (+)+=; +=; +(+)=. Отже, (+)+ =+(+).

 

 

Властивість 3. Сумою протилежних векторів є нуль-вектор: +(-)=0.

Доведення. Нехай =, тоді -=, і за правилом трикутника матимемо +(-)=+==0.

Властивість 4. Нуль-вектор є нейтральним елементом операції додавання: +=+.

 

 

Доведення: Нехай =, =, тоді за правилом трикутника +=+==.

З наведених властивостей додавання векторів випливає, що операція додавання векторів має ті ж властивості, що й операція додавання чисел. Тому часто при перетворенні сум векторів діємо так само, як і при перетворенні числових виразів: (+)+=+(+)=(+)+=(+).

Сума більшої кількості векторів знаходиться за правилом многокутника. Щоб знайти суму n векторів (мал. 9), потрібно з довільної точки O відкласти вектор =, з його кінця вектор =,…,= (початок кожного наступного вектора-доданка є кінцем попереднього). Вектор = буде сумою даних векторів.

Віднімання векторів

 

Операція віднімання векторів вводиться як протилежна до додавання. Означення. Різницею векторів і називається такий вектор , який в сумі з вектором дає вектор : -=якщо +=. /1/

 

 

Доведемо, що вектор існує і притому єдиний. Припустимо, що вектор існує. Тоді, додавши до обох частин рівності вектор (-) і користуючись властивостями суми векторів, маємо: (-)++=(-)+. /2/

Отже, якщо вектор існує, то він визначається попередньою рівністю /2/, а тому єдиний. Дійсно, підставивши /2/ в /1/, одержимо правильну рівність: ++(-)=.

Отже, вектор, який визначається формулою /2/, є різницею векторів і : -=+(-)=. За правилом трикутника +=. Звідси
=- (мал. 10).

Отже, для побудови різниці векторів і досить відкласти ці вектори від спільного початку (=,=) і провести вектор від кінця B вектора-відємника до кінця C вектора-зменшуваного; цей вектор і є шуканою різницею -: =-.

Множення вектора на число

 

Означення. Добутком вектора на дійсне число ? називається вектор , який задовольняє такі умови:

1) =*;

2) , якщо ? >0, і , якщо ? <0.

Такий вектор позначається = ? .

Операція добутку вектора на число має такі властивості.

Властивість 1. ?*=0*= для будь-якого дійсного числа ? і будь-якого вектора . Ця властивість випливає з умови 1) означення.

Властивість 2. Для будь-якого вектора 1*