Автоматизация электропривода поперечной подачи токарно-винторезного станка

Дипломная работа - Разное

Другие дипломы по предмету Разное

полнительных функций: защита от короткого замыкания и перегрузок по току, реверс двигателя, возможность интеграции в комплексные системы автоматического управления и т.д.

Описанный метод управления не может в полной мере обеспечить энергетически и функционально эффективного управления асинхронным электроприводом. Для этих целей исторически первыми применялись преобразователи частоты с непосредственной связью. Простая и естественная компоновка такого преобразователя частоты позволяет получать из высокой частоты низкую. Верхняя частота регулирования ограничена частотой питающей сети, что снижает область применения данных преобразователей. В настоящее время такого рода преобразователи также используют для осуществления плавного пуска асинхронных двигателей большой мощности и регулировании частоты вращения двигателя при не большом диапазоне регулирования.

Теоретически безукоризненный способ управления координатами электропривода с короткозамкнутым асинхронным двигателем состоит в изменении частоты питающего напряжения с одновременным воздействием на его амплитуду - это, так называемое, скалярное управление. Для его осуществления в настоящее время используются преобразователь частоты на основе автономного инвертора. Скалярное управление позволяет плавно регулировать скорость вращения ротора асинхронного двигателя. При этом в зависимости от нагрузочных характеристик исполнительного механизма, применяют различные законы формирования частоты и амплитуды подводимого к двигателю напряжения. Самым распространенным из них является закон U к f константа.

При проектировании частотно-регулируемого автоматизированного электропривода, следует помнить об ухудшении вентиляции двигателя. Вентилятор любого общепромышленного двигателя рассчитывается исходя из работы на номинальной скорости. Если же скорость уменьшается - уменьшается и эффективность работы вентилятора, что может вызвать перегрев двигателя. Для работы в длительном режиме на пониженных частотах и с номинальным моментом, необходимо использовать специальный двигатель или общепромышленный двигатель, обдуваемый внешним вентилятором.

Если необходимо обеспечить наилучшую динамику системы применяется векторное управление, фактически обеспечивающее амплитудно-фазовое управление. Данное управление позволяет получить высокий пусковой момент и сохранить его до номинальной скорости асинхронного электродвигателя. Векторное управление обеспечивает высокое качество регулирования по скорости, даже при скачкообразном изменении момента сопротивления на валу. Важно и то, что векторное управление позволяет наилучшим образом обеспечить энергосбережение, так как преобразователь частоты (инвертор) передает в двигатель ровно столько мощности, сколько необходимо для вращения нагрузки с заданной скоростью, даже если входное напряжение больше чем 380В. Экономия электроэнергии особенно заметна на мощных двигателях 11кВт и выше.

Т.о. рационально использовать систему электропривода ПЧ - АД с частотно-токовым способом управления. При частотно-токовом способе управления асинхронными двигателями сигнал на входе электропривода формирует момент на валу электродвигателя. Механические характеристики привода являются мягкими. Так как функциональная зависимость момента электродвигателя переменного тока от величины тока якоря является более прочной, чем от величины напряжения на якоре, входной сигнал формирует ток якоря. Мгновенные значения токов якоря в фазах обмотки определяются входными сигналами (требуемым моментом) и условным положением ротора.

Они должны соответствовать требованиям к мгновенным значениям токов многофазной симметричной системы.

Отличительной чертой приводов с частотно-токовым управления является применение в них преобразователей энергии на основе усилителей тока, представляющих собой усилители напряжения, охваченные глубокой отрицательной связью по мгновенным значениям токов фаз электродвигателя. В этом случае напряжение на фазах электродвигателя автоматически формируется преобразователем энергии для заданного режима.

Преимущества частотно-токового управления:

высокие статические и динамические показатели электропривода, момент на валу является линейной функцией входного сигнала для всех скоростей привода;

исключается возможность выпадения из синхронизма, опрокидывание и качание электродвигателей переменного тока;

при достаточно простых технических средствах возможно оптимальное использование электродвигателей для получения как максимального момента на валу при заданном токе, так и высоких энергетических показателей;

высокая надежность работы преобразователя энергии так как осуществляется контроль за мгновенными значениями токов фаз двигателя.

В качестве систем управления в настоящее время применяются преимущественно программируемые контроллеры, которые позволяют довольно просто реализовывать системы управления и различные законы управления электроприводом.

Из выше изложенного материала можно сделать следующий вывод, что для привода поперечного движения станков наиболее рациональной системой электропривода будет - ПЧ-АД.

 

.3 Проектирование функциональной схемы автоматизированного электропривода

 

Среди возможных вариантов реализации электропривода поперечной подачи можно выделить следующую систему ПЧ-АД с ориентацией координатной системы по на