Исследование эффективности лекции с использованием компьютерной презентации на примере курса "Общей биологии" для студентов первого курса физического факультета

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика



иных специализированных метаболических путей. Некоторые химические реакции, в частности световые реакции фотосинтеза в хлоропластах или окислительное фосфорилирование при дыхании в митохондриях, протекают на самих мембранах. Здесь же на мембранах располагаются и рецепторные участки для распознавания внешних стимулов (гормонов или других химических веществ), поступающих из окружающей среды или из другой части самого организма. Знакомство со всеми свойствами клеточных мембран необходимо для понимания того, как функционирует клетка

В 1972 г. Сингер и Николсон (Singer, Nicolson) предложили жидкостно-мозаичную модель мембраны, согласно которой белковые молекулы, плавающие в жидком липидном бислое, образуют в нем как бы своеобразную мозаику.

В этой модели липидный бислой рассматривается как элементарная мембрана, но здесь он представлен как динамическая структура:

белки плавают в этом липидном море подобно островам - иногда свободно, а иногда как бы на привязи - их удерживают микрофиламенты, проникающие в цитоплазму. Липиды также могут перемещаться, меняя свое положение. Трехслойный вид мембраны есть результат расположения белков и полярных липидов, - центральный липидный бислой заключен между двумя слоями белка .

По биологической роли мембранные белки можно разделить на три группы:

  1. Структурные белки
  2. Рецепторные белки (действуют как переносчики, транспортируя через мембрану те или иные вещества).
  3. Ферменты

У фосфолипидов (соединений, содержащих фосфатную группу) молекулы состоят из полярной головы( полярные группы или молекулы несут заряд и проявляют сродство к воде (они гидрофильны), а неполярные с водой не смешиваются (они гидрофобны) ) и двух неполярных хвостов. Гликолипиды представляют собой продукт соединения липидов с углеводом. Подобно фосфолипидам, они состоят из полярной головы и неполярных хвостов.

Данные, касающиеся строения биологических мембран:

. Разные типы мембран различаются по своей толщине, но в большинстве случаев толщина мембран составляет 5-10 нм; например, толщина плазматической мембраны равна 7,5 нм.

. Мембраны -это липопротеиновые структуры (липид + белок). К некоторым липидным и белковым молекулам на внешних поверхностях присоединены углеводные компоненты (гликозильные группы). Обычно на долю углевода в мембране приходится от 2 до 10%.

. Липиды спонтанно образуют бислой. Это объясняется тем, что их молекулы имеют полярные головы и неполярные хвосты.

. Мембранные белки выполняют разнообразные функции.

. Мембранные липиды и белки быстро диффундируют в латеральном направлении (в плоскости мембраны), если только они как-нибудь не закреплены или не ограничены в своем передвижении.

Транспорт через плазматическую мембрану

Перед живыми организмами стоит проблема транспорта веществ на малые расстояния, через клеточные мембраны. Хотя толщина этих мембран не превышает обычно 5-10 нм, они служат барьером для ионов и молекул. Транспорт через мембраны жизненно важен по ряду причин. Он должен обеспечить поддержание в клетке соответствующего рН и надлежащей ионной концентрации, необходимых для эффективной работы клеточных ферментов; он поставляет питательные вещества, которые служат источником энергии, а также сырьем для образования клеточных компонентов; от него зависят выведение из клетки токсичных отходов, секреция различных полезных веществ и, наконец, создание ионных градиентов, необходимых для нервной и мышечной активности. Существует четыре основных механизма для поступления веществ в клетку или выхода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Активный транспорт

Активный транспорт-это сопряженный с потреблением энергии перенос молекул или ионов через мембрану против градиента концентрации. Энергия требуется потому, что вещество должно двигаться вопреки своему .естественному стремлению диффундировать в противоположном направлении. Движение это обычно однонаправленное( необратимое).

Для ионов направление диффузии определяется двумя факторами: один из этих факторов - концентрация, а другой - электрический заряд. Ионы обычно диффундируют из области с высокой их концентрацией в область с низкой концентрацией. Кроме того, они обычно притягиваются областью с противоположным зарядом и отталкиваются областью с одноименным зарядом. Поэтому мы говорим, что они движутся по электрохимическим градиентам, в которых объединяется эффект электрического и концентрационного градиентов. Строго говоря, активный транспорт ионов - это их перемещение против электрохимического градиента.

Активный транспорт осуществляется всеми клетками, но в некоторых физиологических процессах он играет особо важную роль.

К пассивному транспорту относятся такие клеточные механизмы, как диффузия и осмос.

В этом случае происходит быстрое диффундирование газов без затрат энергии.

Газы, например кислород, потребляемый клетками при дыхании, и образующаяся в процессе дыхания СО 2, в растворе быстро диффундируют через мембраны, перемещаясь по диффузионному градиенту, т. е. из области с высокой концентрацией в область с низкой концентрацией. Ионы и малые полярные молекулы, такие, как глюкоза, аминокислоты, жирные кислоты и глицерол, обычно диффундируют чере?/p>