Динамика показателей Гарвардского степ–теста при различных тренировочных воздействиях у легкоатлетов–средневиков 10 - 11 лет

Дипломная работа - Туризм

Другие дипломы по предмету Туризм

ования А.Н.Воробьева (1970-1980 гг.) показали, что выполнение упражнений до отказа требует особой организации дыхания. Исследования показали, что наибольшую силу атлет показывает при задержке дыхания и натуживании, меньшую силу он может продемонстрировать при выдохе, но очень трудно поднимать тяжести в момент вдоха. Поэтому в одном двигательном действии мы встречаем следующую последовательность: короткий вдох в момент удержания веса или его опускания (уступающий режим функционирования мышц), задержка дыхания в момент сокращения и преодоления самого трудного участка траектории, выдох при снижении нагрузки на мышцы.

Натуживание приводит к росту внутригрудного давления, сердце уменьшается в размерах до 50%. Это вызвано как изгнанием крови из полостей сердца, так и недостаточным ее притоком. В этот момент ЧСС растет из состояния покоя с 70 до 100 ударов - это без выполнения силового упражнения, а систоличесое давление повышается до 175-200 мм рт.ст.. Такое же высокое давление наблюдается сразу же после выполнения силового упражнения и относительно нормализуется через 1-3 мин. отдыха. Регулярные занятия силовыми упражнениями вырабатывают рефлексы, способствующие повышению артериального давления уже в состоянии покоя перед тренировкой и особенно перед соревнованиями и составляют в среднем САД= 156, а ДАД = 87 мм рт. ст., причем у тяжеловесов давление может составлять САД=170-180 мм рт.ст.

 

1.2.3 Схема работы мышц в соревновательном беге

Со старта спортсмен выходит на нужную скорость, необходимую для бега, скажем, для этого нужно 15 секунд. Бегун рекрутирует практически все волокна в рабочих мышцах, которые тратят свою АТФ и креатинфосфат. Как только он вышел на эту скорость, активность мышц снижается до величины, необходимой для поддержания нужной скорости. Следовательно, те волокна, которые отработали свое (как правило, это быстрые или гликолитические), выключаются из работы и начинают отдыхать и восстанавливать АТФ, а бегун движется 30-40 секунд за счет тех мышц, которые обеспечивает эту скорость, но у них запас АТФ также начинает снижаться, а аэробные процессы не могут обеспечить заданной мощности, и бегун начинает подключать все новые двигательные единицы. Если к 600 м у него остались в запасе еще быстрые волокна, он сможет прибавить, если он исчерпал мышечные ресурсы, то сможет только поддерживать скорость, которая начнет падать, так как он включает не только окислительные волокна, но и самые быстрые гликолитические волокна, образующие молочную кислоту, ионы водорода. Это мешает мышцам сокращаться, и как бы бегун не хотел быстро финишировать, ничего не получится - скорость будет снижаться.

Идеальный бегун должен быть сильным и у него не должно быть гликолитических волокон. Чем выше анаэробный порог и чем ближе он к максимальному потреблению кислорода, тем выше будет результат. Ярким примером был новозеландец Питер Снелл, много использовавший в тренировке бег по холмам, что как раз наращивает количество митохондрий в гликолитических волокнах и гарантирует такой высокий уровень аэробных возможностей, что он мог не закисляться до самого финиша. Поэтому при низких скоростных способностях он умудрялся бежать в конце дистанции очень быстро.

Можно сказать, что стратегия подготовки бегуна на средние дистанции с точки зрения развития мышц - это увеличение силы ММВ и перевод гликолитических в окислительные волокна.Это не изменение наследственной мышечной композиции, а попытка увеличить массу митохондрий и поперечник ММВ.

У нас сейчас есть Юрий Борзаковский, который начинает 800 м спокойно, а потом очень быстро финиширует. Можно предположить, что он тоже не закисляется. Если у человека 100% окислительных волокон, то его тактика прохождения дистанции однозначна - он разгоняется до seluyanov.ru)

 

.2.4 Гормональные механизмы адаптации к тренировке

Что происходит с гормональной сферой человека при больших (тренировочных) физических нагрузках? Происходит выброс в кровь гормонов катаболического действия. Это в первую очередь гормоны щитовидной железы, гормоны надпочечников, глюкагон (гормон поджелудочной железы). Все эти гормоны вызывают распад гликогена до глюкозы, белков до аминокислот, жиров до жирных кислот и глицерина. Такой рабочий катаболизм призван обеспечить организм как можно большим количеством энергетических субстратов для компенсации того энергетического дефицита, который возникает в процессе тренировки.

Помимо вышеперечисленных гормонов происходит также выброс в кровь половых гормонов и соматотропина (гормона роста). Они не вызывают расщепления белковых структур, наоборот, выброс этих гормонов препятствует чрезмерному распаду белка. Однако, усиливается разложение гликогена до глюкозы, и, еще в большей степени - нейтрального жира из подкожно-жировых депо до жирных кислот и глицерина. Жирные кислоты и глицерин, уже в свою очередь, включаются в энергетический обмен.

После окончания тренировки картина уже несколько другая. Снижается содержание в кр?/p>