Виготовлення лікарських препаратів на основі амілолітичних ферментів
Курсовой проект - Медицина, физкультура, здравоохранение
Другие курсовые по предмету Медицина, физкультура, здравоохранение
?ертинної структури, представленої двома ідентичними субодиниця з молекулярною масою 53600Да, що володіють каталітичної активністю. Її стабільність визначається водневими звязками і гідрофобними взаємодіями і може залежати від невеликих змін в просторовій структурі кожної з взаємодіючих субодиниць. Причому четвертинна структура, очевидно, має здатність передачі структурних перебудов від однієї субодиниці до іншої і є одним з факторів регуляції функціональної активності молекули білка.
Рисунок 5.1. Просторова структура глюкоамілази
Результати досліджень впливу n-меркурібензоата на каталітичну активність глюкоамілази дозволяють зробити висновок про те, що до складу активного центру даного ферменту не входять імідазольного група гістидину і SH-групи, а в гідролізі крохмалю беруть участь карбоксильні групи аспарагінової і глутамінової кислот.
Використовуючи дані рентгеноструктурного аналізуі програму MolScript, методом молекулярного моделювання показано, що активний центр глюкоамілази розташований в наскрізний порожнини (~ 1,5 нм), обмежену наступними амінокислотними залишками: Leu-58, Leu-130, Leu-177, Leu - 319, Trp-178, Trp-417, Phe-187 (Рис1).
Встановлено, що в гідролізі крохмалю беруть участь карбоксильні групи Asp-55, Glu-179, Glu-400 (рис.2).
Активний центр ферменту розташовується в щілини, прикритій двома кластерами молекул H2O: перше - в області Leu-58 (12 молекул H2O), другий - у поглибленні активного центру (7 молекул). Показано, що з одного боку щілини активного центру зосереджені Asp-55 та Glu-179, а з протилежного - Glu-400.
Результати рентгеноструктурного аналізу (Альошин А.Е. та ін, 1994 [10]) показали, що поверхня молекули глюкоамілази глікозильованого: 10 амінокислотних залишків серину і треоніну мають маноза (Ser-453, Ser-455, Ser-459, Thr-457 і ін).
Цей фермент характеризується наявністю N-термінального домену, що складається з 440 амінокислотних залишків, O-глікозильованої ділянки, що має 70 амінокислот і C-термінального крохмалезвязуючого домену (100 амінокислот). Каталітичний домен має 2 N-глікозильовані ділянки, причому контакт між N-глікозильованими ланцюгами і поліпептидом стабілізується залишком маннози за допомогою водневого звязку або іонізованими молекулами води, чим і визначається стабільність ферменту і можливість утворення надмолекулярних структур. O-глікозильований домен має залишки Gly перед і після C-кінця, які являють собою вигини, що визначають взаємодію крохмалезвязуючого домену з каталітичним і відповідну орієнтацію молекули субстрату. Глікозилювання запобігає скупчення молекул субстрату в звязують центрах і забезпечує стехіометричної звязування.
Рисунок 5.2. Просторова структура макромолекули глюкоамілази
Методом компютерного моделювання встановлено, що для молекул глюкоамілази характерна щільна упаковка гідрофобного ядра у вигляді 13 ?-спіральних ділянок (рис.3), а так само антипаралельних ?-структур, що утворюють 11 петель (рис. 4).
Рисунок 5.3. Топологія ?-спіралей в макромолекулі глюкоамілази
Рисунок 5.4. Топологія ?-слоїв в макромолекулі глюкоамілази
Під вторинної структурі присутні, крім того, невпорядковані ділянки в кількості 19 (мал. 5). У відсотковому співвідношенні даних структур по протяжності, аморфні ділянки переважають над іншими, що підтверджено також методом ІЧ-спектроскопії.
Рисунок 5. Топологія неупорядкованих ділянок в макромолекулі глюкоамілази
Таким чином, компютерне моделювання дозволяє отримувати додаткову інформацію про структуру білкових макромолекул і проводити розшифровку механізму ферментативного каталізу.
В даний час продовжуються роботи з проблем вивчення топології різних амілолітичних ферментів, таких як ?-амілаза, ?-амілаза, інулаза та ін. Обговорюються питання топологічної самоорганізації досліджуваних білкових макромолекул, яка визначається взаємозвязком первинної та вторинної структури[25, 26, 27].
6. ОСОБЛИВОСТІ ТЕХНОЛОГІЧНОГО ПРОЦЕСУ ВИРОБНИЦТВА АМІЛОЛІТИЧНИХ ФЕРМЕНТНИХ ПРЕПАРАТІВ
6.1 Виробничі способи культивування мікроорганізмів - продуцентів ферментів
Існує два способи культивування мікроорганізмів - продуцентів ферментів: поверхневий і глибинний.
Перший спосіб, який застосовується для культивування мікроскопічних грибів, характеризується розвитком міцелію на поверхні твердого або рідкого субстрату. На рідкому субстраті утворюється плівка міцелію, яка продукує не тільки амілолітичні ферменти, але й органічні кислоти, що їх інактивують, тому використовують тверді субстрати з розвиненою поверхнею - пшеничні висівки, дробину барди, картопляну мезгу та ін. Максимальна активність ферментів досягається при культивуванні грибів на пшеничних висівках. Дробина барди бідна живильними речовинами, і активність ферментів у культурах грибів, вирощених на ній, в 4-5 разів нижче, ніж на висівках. Зріла культура грибів внаслідок обволікання часток висівок міцелієм має вигляд щільної войлокоподібної маси. При поверхневому культивуванні пшеничні висівки повинні бути зволожені і простерилізовано. У стерильних умовах готують посівну культуру, але вирощують гриби в нестерильних умовах у кюветах, які встановлюються в негерметичних ростильних камерах. Теплоту, що виділяється в процесі росту грибів, видаляють продування через ростильну камеру стерильного кондиціонованого повітря.
Поверхневий спосіб вирощування мікроскопічних грибів має ряд пе