Cистема Aлор-Трейд

Дипломная работа - Экономика

Другие дипломы по предмету Экономика

?.

При совершении новой сделки против направления хвоста индекса незаконченного ИПС, если с>0, значение “с” становится равным -1, если с<0, то значение “с” уменьшается на 1. Параметр же “b” увеличивается 1.

Зависимость (10) можно представить такой же, как и в (3) функцией:

 

 

Найденное методом наименьших квадратов значение exp(-) равно 0,94.

 

2.1.4. Нахождение вероятностей повышения и понижения САЛК в конце ИПС неизвестного размера

 

Рассмотрим схему образования законченного ИПС из незаконченного. Ввиду большого числа возможных вариантов трансформаций незаконченного ИПС в различные ИПС в случаях большого размера последних, ограничимся рассмотрением формирования ИПС, размер которых не превышает 3 сделки. Схема образования различных ИПС размером в 3 сделки показана на рис. 4.

 

Схема формирования различных ИПС размером в 3 сделки

Рис. 4

 

Линиями с наклоном вверх, обозначены сделки, совершаемые в направлении аккумулирования. Линии с наклоном вниз обозначают сделки, совершенные в направлении диссипации. Возле каждой линии указаны вероятности совершения соответствующей ей сделки.

Зная вероятности Ррac(a,b,c) и Рnac(a,b,c) изменения САЛК по завершению ИПС определенного размера, рассмотрим случай, когда размер ИПС неизвестен, что соответствует реальным условиям торгов.

Из экспериментальных данных следует, что частота появления ИПС определенного размера l=а+b уменьшается с увеличением значения l (табл. 2).

 

Таблица 2

Количество ИПС размера l=а+b в экспериментальной статистической базе данных

lN(l)118221173864675446387258189121013114124137

N(l)-количество ИПС размера l в экспериментальной статистической базе данных.

Общее количество ИПС в экспериментальной статистической базе данных n=627.

Делением каждой величины N(l) на n были получены экспериментальные значения вероятностей f*(l) появления ИПС с размером l. Значения функции f*(l) приведены в табл. 3.

Таблица 3

Экспериментальные значения вероятностей f*(l)появления ИПС с размером l

lf*(l)10,29020,187

 

30,13740,10750,07060,06170,04080,02990,019100,021110,006120,006130,011

Экспериментально полученная зависимость f*(l) хорошо аппроксимируется показательной функцией:

.

Согласно правилу В.И. Романовского, гипотезу о данном виде функции f(l) можно считать верной, если число R<3:

 

,

где статистика Пирсона;

k число степеней свободы.

 

Величина вычисляется по формуле:

,

где абсолютные экспериментальные частоты: =N(j);

абсолютные теоретические частоты;

m минимальная величина размера ИПС до которой происходит подсчет .

 

При этом m и вычисляются по формулам:

 

m1+ln n

 

=f(j)n

 

Число степеней свободы k для экспоненциального вида функции f(l) вычисляется как:

k=m-2

 

Было выбрано m=8, при этом число R, вычисленное по формулам (13)-(17) составило 0,95<3, т.е. гипотезу о данном виде функции (12) можно считать верной.

Значения f(l), в зависимости от величины l, приведены в табл. 4.

 

Таблица 4

Значения аппроксимированной зависимости f(l)вероятности появления ИПС размером l от величины l

lf(l)1210,26220,192

Продолжение табл. 4

 

1230,14040,10350,07560,05570,04080,029

 

 

 

 

90,021100,016110,011120,008130,006

Пусть lmax-размер ИПС, начиная с которого, вероятность появления ИПС с размерами llmax по статистике меньше 0,01. Из приведенных в табл.4.12 результатов видно, что lmax =12 для исследуемых акций. В дальнейших расчетах, будем считать, что максимальный размер ИПС не превышает величины lmax. С учетом этого каждому незаконченному ИПС, размера l (llmax) можно поставить в соответствие функцию fl(х), которая определяет вероятности появления законченных ИПС с размером х: lх12. Функции fl(х) выражаются как:

 

,

где 1 llmax, lxlmax.

 

Искомые величины Рр(a,b,c) и Рn(a,b,c) рассчитываются следующим образом:

 

 

Рn(a,b,c)=1-Рр(a,b,c),

где l - размер текущего незаконченного ИПС, l=a+b;

fl(x) - вероятность того, что ИПС размером x будет законченным;

H(x) - вероятность того, что новая сделка вызовет повышение САЛК

законченного ИПС размером x.

 

Поскольку с увеличением значения x число слагаемых в функции H(х) увеличивается по закону геометрической прогрессии, формулы расчета значений H(х) приведены только для H(l) и H(l+1), так что:

если с>0:

 

H(l)=Рpаc(a,b,c)

 

H(l+1)=Pt(c)Рpаc(a+1,b,c+1)+(1-Pt(c))Рpаc(a,b+1,-1)

 

если с<0:

H(l)=Рpаc(a,b,c)

 

H(l+1)=(1-Pt(c))Рpаc(a+1,b,1)+Pt(c)Рpаc(a,b+1,c-1)

 

где Рpаc(a,b,c) - вероятность повышения САЛК законченного ИПС с параметрами a,b,c;

Pt(c) - вероятность совершения новой сделки по направлению хвоста индекса незаконченного ИПС в зависимости от величины с.

 

2.2. Применение теории проверки гипотез Байеса

 

Пусть имеется выборка х=(х1,...,xn) размера n. Известно, что эта выборка принадлежит одному из двух распределений: W(x|A1) или W(x|A2). Априорные вероятности состояний А1 и А2 равны, соответственно, v1 и v2=1-v1. Необходимо найти оптимальный с точки зрения возможных потерь метод принятия решения о том, какому из указанных распределений принадлежит выборка.

Пусть H1 и H2 гипотезы о том, что выборка принадлежит распределениям, соответственно, W(x|A1) и W(x|A2), а и -решения, состоящие в принятии гипотез, соответственно, Н1 или Н2.

Определим граничное значение х*, в зависимости от которого по текущему х будем принимать решения в пользу гипотезы Н1 или Н2. При х<