Управление автоматической линией из неагрегатных станков

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

ВВЕДЕНИЕ

 

В современном машиностроении особое место принадлежит средствам электрической автоматизации и электрическому приводу. Электрическим приводом называют устройство, состоящее из электродвигателя, аппаратуры управления им и механических передач, связывающих электродвигатель с рабочими органами производственной машины.

Первый электрический двигатель был изобретен в 1834 г. русским академиком Б.С. Якоби. В 1838 г. Б.С. Якоби создал и первый электропривод. Его электродвигатель, установленный на лодке, двигал ее с 12 пассажирами по Неве. Б.С. Якоби своими работами доказал возможность практического применения электропривода. Решающее значение для развития электропривода имел изобретенный русским инженером М.О. Доливо-Добровольским в 1891 г. трехфазный асинхронный двигатель. Эти простые и надежные машины до настоящего времени являются основными двигателями на промышленных предприятиях.

Рассмотрим основные этапы развития электрического привода производственных машин. Долгое время для привода всех производственных машин предприятия применяли одну паровую машину достаточной мощности. Это был общезаводский паровой привод. В дальнейшем паровую машину заменил электродвигатель.

Неудобства распределения энергии внутри здания посредством междуэтажных механических передач послужили причиной возникновения группового привода. В этом случае производственные машины разбивали на большие группы, приводимые в движение отдельными электродвигателями достаточной мощности. Движение к производственным машинам по-прежнему передавалось посредством трансмиссий. Такой привод был малоэкономичным, так как потери энергии в трансмиссиях были велики.

Впоследствии групповой привод был заменен одиночным приводом, в котором каждый станок снабжали отдельным электродвигателем. При использовании одиночного привода уменьшались строительные расходы, облегчалась планировка цеха и работа подъемных кранов, значительно улучшались условия труда. Применение электропривода со специфическими электромеханическими свойствами и с удобным конструктивным оформлением приводит к постепенному слиянию электрооборудования с элементами производственной машины.

Когда станок имеет ряд подвижных узлов, применяют отдельные электродвигатели для перемещения каждого узла. На станке, снабженном таким многодвигательным приводом, рабочий должен лишь управлять отдельными двигателями посредством кнопок, переключателей, регуляторов частоты вращения. В результате сокращается время, затрачиваемое на вспомогательные перемещения, и повышается производительность труда.

Число электродвигателей, устанавливаемых на одном станке, может доходить до нескольких десятков. Быстрое и точное управление этими электродвигателями становится для рабочего трудным, а иногда и непосильным, при высокой производительности станка и малом времени обработки одной детали. К. тому же, при ручном управлении неизбежны ошибки. По этой причине применяют автоматизированный многодвигательный привод, в котором автоматизированные системы управления включают, отключают и реверсируют электродвигатели в нужное время и в требуемых сочетаниях. Для быстрого, точного и надежного управления приводами используют последние достижения электроавтоматики, электроники, вычислительной и полупроводниковой техники.

Система управления автоматизирует технологический процесс и обращает станок в автомат. Количество труда, затрачиваемое рабочим на обслуживание данного станка, уменьшается, и рабочий может перейти на многостаночное обслуживание. Производительность труда рабочего при этом возрастает.

Автоматизация обработки детали обычно приводит к снижению ее себестоимости. Себестоимость обработки детали А зависит от стоимости заготовок а, стоимости рабочей силы б, стоимости электроэнергии в и накладных расходов г. Если все указанные факторы отнести ко времени, в течение которого обрабатывают В деталей, то

 

 

При этом в машиностроении обычно (а + б) намного больше (в + г).

С увеличением степени автоматизации станка растет потребление электроэнергии и ее стоимость в, растет и величина накладных расходов г, поскольку станок становится более сложным и, следовательно, более дорогим. Стоимость рабочей силы по мере автоматизации уменьшается, а число деталей В, обработанных за то же время, сильно возрастает. Это ведет к уменьшению себестоимости А обработки детали.

Автоматизированные системы управления несколькими станками, обеспечивающими последовательную обработку одной детали, дают возможность создавать автоматические линии, автоматические участки, цехи и заводы-автоматы. Перенос деталей со станка на станок, их подъем, спуск и поворот, зажатие в приспособлении производят разного рода промышленные роботы: автоматические руки, транспортеры, подъемники, склизы, поворотные столы, барабаны, электроключи, электрогайковерты и пр.

Для автоматизации станков помимо электрического привода применяют гидравлические и, в отдельных случаях, пневматические приводы, а также механические, гидравлические и пневматические средства управления. Однако основные функции управления обычно выполняют электрические автоматизированные системы управления. Это объясняется тем, что электрическая автоматизация, электронная, полупроводниковая и вычислительная техника обеспечивают, как правило, более простые решения сложных производственных задач автоматизации совре