Универсальная геометрия в природе и архитектуре
Информация - Математика и статистика
Другие материалы по предмету Математика и статистика
фику симметрии геометрии комплексного пространства (рис.4). При всех значениях скоростей, для пространственных модулей характерны среднепропорциональные отношения (11г, 12г).
Приведенные уравнения (а всего с учетом x-подобных, t-подобных, xt-подобных моментов, интервалов и результирующих моментов в их более 50: -13 осевых на нормали, - 13 осевых на касательной, - 13 RL-винтовых, между x-подобной и t-подобной четвертями, - 16 осевых xt-подобных на бинормали) демонстрирует богатство отношений закона сохранения движения, определяя геометрию инерциального движения на всем () диапазоне скоростей. С учетом различных, возможных вариаций мнимых и действительных моментов, общее количество уравнений сохранения значительно больше. Подобное многообразие мнимых, действительных и комплексных отношений инерциального движения проявляется, вероятно, не только на “виртуальном” уровне микро-материи (в мире микрочастиц), но и на других, более сложных макро- и мега- уровнях организации материи.
Переход из ИСО СТО в абсолютную систему отсчета можно проиллюстрировать следующим образом. Внешний наблюдатель явлений, происходящих в ИСО, неудовлетворенный тем, что гравитационные эффекты не обеспечивают, неискаженных кривизной пространства-времени результатов наблюдений пробной массы, обнаруживает, что в наблюдаемой ИСО, кроме базового координатного пространства (), существует инвариантная, но зеркальная система координат (относительно). Переход в нее связан с зеркальными преобразованиями, заменой с (расширяющаяся) на (сокращающаяся). Заняв место в новой, он обнаруживает; что центры обоих ИСО, совпадают; что изменение скорости не связано, ни с перемещениями относительно центра, ни с преобразованиями координатного пространства; что он всегда находится, в общем, для обоих ИСО центре, но в зеркальной системе, привычное для него расширение массы, превратилось в сокращение. Зная, что относительные связаны между собой абсолютной скоростью света, он обнаруживает еще одну, третью, , (. = 1/1 = с/с), которая ни расширяется, ни сокращается, а всегда находится в состоянии покоя. Относительно третьей ИСО, движение исследуемой массы - суть взаимосвязанные процессы сжатия и расширения (относительно состояния покоя =) под действием правых и левых моментов кручения, положительных и отрицательных энергий плотности
5. ОСНОВНЫЕ СВОЙСТВА АБСОЛЮТНОЙ СИСТЕМЫ ОТСЧЕТА.
5.1. Абсолютная система отсчета () является следствием соединения принятой в СТО (покой при v=0) и не выявленной в СТО (покой при v=c). Каждая ИСО представлена одной осью (нормалью или касательной) в соприкасающейся плоскости трехгранника Френе. Обе ИСО взаимно ортогональны. Результирующая представлена на бинормали и является следствием векторного произведения на. С другой стороны, мнимые и действительные, положительные и отрицательные моменты в соприкасающейся плоскости трехгранника Френе являются следствием квадратичного разложения бинормальных моментов. С мнимыми моментами могут быть связаны различные "виртуальные" эффекты (например, когда действительный бинормальный момент распадается на два мнимых момента). Координатные оси имеют переменную сигнатуру в зависимости от знака направления оси. В связи с вышесказанным, результирующая система отсчета может рассматриваться или как бинормаль, или как эквивалентная ей соприкасающаяся плоскость, что, безусловно, определяет ее специфику (т.е. дуализм) и может быть связано с различными, существенными в физике, эффектами.
5.2. имеет ортогональную 6-мерную систему пространства кручений. Мнимый и действительный трехгранники Френе, по положительным и отрицательным направлениям касательной и нормали, связаны абсолютными осевыми интервалами (принятым в СТО уравнением 4-мерного пространственно-временного континуума, но не для трансляций, а для 3-мерных, x-подобных и 1-мерных, t-подобных, противоположных по направлению, моментов инерции. О пространстве-времени мы говорим условно, имея в виду различие в метрике (как между 3-мерной касательной скоростью и 1-мерной нормальной скоростью).
5.3. Геометрия включает три взаимосвязанных на афинной плоскости геометрии: геометрия Минковского (М-геометрия), геометрия Евклида (Е-геометрия), геометрия Галилея (Г-геометрия). Для этих геометрий действительны: аксиома о параллельных прямых, определение координатного пространства (ортогональная система), определение расстояний (теорема Пифагора). Можно говорить о том, чтосинтезирует три А-геометрии в целостную геометрическую систему - МЕГа геометрию (4). В частности, положительные и отрицательные осевые моменты в соприкасающейся плоскости связаны абсолютными светоподобными моментами в М-геометрии; относительные, нормальные и касательные “левые” моменты связаны абсолютным x-подобным моментом в Е-геометрии; нормальные и касательные “правые” моменты связаны абсолютным t-подобным моментом в Е-геометрии; положительные и отрицательные бинормальные моменты связаны абсолютным бинормальным моментом в Г-геометрии. Е-геометрия и М-геометрия являются следствием векторного разложением Г-геометрии.
5.4. Система координат остается ортогональной для всех состояний инерциального движения (в отличии от координат пространства-времени ИСО ОТО, где действительные кручения массы пробной частицы перенесены на мнимые преобразования (повороты) координатных осей при изменении скорости. В связи с отсутствием гравитационных эффектов (пробная частица а?/p>