Универсальная геометрия в природе и архитектуре
Информация - Математика и статистика
Другие материалы по предмету Математика и статистика
формой выражения законов сохранения, ИСО представлена тремя (действительным, мнимым и комплексным) трехгранниками Френе. Результатом зеркальной симметрии двух трехгранников, подвижных в противоположных направлениях, является статичная система отсчета, в которой отсутствуют трансляционные координаты (т.е. отсутствует пространство-время). Потеря пространственно-временной определенности цена перехода к шестимерному пространству кручений. В условиях зеркальной симметрии нормального и касательного базисных векторов, векторное произведение нормальной скорости (мнимой или действительной) на касательную (мнимую или действительную) в инерциальной системе отсчета будет иметь форму квадратов относительных скоростей соответственно = 11, ,.
Таким образом ИСО связана с кручениями, где: 1, и - относительные угловые скорости ; = 11, , - бинормальные (квадратичные) скорости. Импульсы и энергии в законах сохранения, соответственно, являются моментами (инерции) энергий и импульсов. Поскольку в полученной системе отсчета состояние покоя связано с = = или 0,707… скорости света, (при, связанной с массами положительной плотности и при, связанной с массами отрицательной плотности), состояние покоя результирующей системы будет характеризоваться нулевой плотностью покоя. (+p) + (-p) = 0, а сама система отсчета может рассматриваться как абсолютная система отсчета движения изолированной физической системы. Различие в метрике отдельных элементов системы отсчета отражает не отношения пространства и времени, а отношения между 3-мерными и 1-мерными элементами пространства скоростей (в частности нормальные и касательные скорости).
4.3. Уравнения законов сохранения в абсолютной системе отсчета. Геометрия преобразованной системы включает следующие основные законы сохранения (при следующих физических величинах):
- момент инерции (эквивалентный массе покоя),
1 - абсолютный интервал относительной угловой скорости 1 = с/с
- относительный интервал относительной угловой скорости = v/c, может, например, рассматриваться как угловая скорость положительной массы, как векторное разложение квадратичной бинормальной скорости на равные между собой нормальную и касательную скорости инерции положительной массы
- относительный интервал относительной угловой скорости может, рассматриваться как угловая скорость отрицательной массы, как векторное разложение квадратичной бинормальной скорости на равные между собою нормальную и касательную скорости инерции отрицательной массы
- угол между скоростью и скоростью 1
;;; -общая форма уравнения скоростей
Ниже, в принципиальной форме, приведены основные уравнения абсолютных и относительных интервалов моментов (в примерном виде по модулю), без учета изменения направлений векторов скоростей и мнимых характеристик крутящих моментов. Уравнения легко переводятся в чисто геометрическую форму для единичной сферы (при =1).
А) Относительные (нормальные и касательные правовинтовые и левовинтовые) моменты в соприкасающейся плоскости подвижного трехгранника Френе (всего - 4):
1а) - нормальный x-подобный интервал левого момента инерции
2а) - касательный x-подобный интервал левого момента инерции
3а) - нормальный t-подобный интервал правого момента инерции
4а) - касательный t-подобный интервал правого момента инерции
Б) Абсолютные (нормальные и касательные правовинтовые и левовинтовые) интервалы моментов инерции в соприкасающейся плоскости подвижного трехгранника Френе (всего 4):
1б) - абсолютный x-подобный интервал (4-я четверть)
2b) - абсолютный t-подобный интервал правых (2-я четверть)
3b) - абсолютный осевой xt-подобный интервал нормальных (,) -моментов
4b) - абсолютный осевой xt-подобный интервал касательных (,) -моментов
В) Бинормальные 3х мерные моменты инерции (,) для (+P) и (-P) плотности на бинормали подвижного трехгранника Френе:
1в) - относительный интервал бинормального момента инерции -P плотности
2в) -относительный интервал бинормального момента инерции +P плотности
3в) абсолютный бинормальный момент инерции +P плотности
нормальный и касательный моменты инерции в соприкасающейся плоскости могут рассматриваться как производные (корни) от положительных и отрицательных бинормальных моментов: и, соответственно, могут принимать значения:;;;
4в) - относительный векторный бинормальный RL-момент инерции
где = - угол между и продолжением
5в) - относительный скалярный бинормальный RL-момент инерции
где = - угол между и продолжением
Кроме того, поскольку бинормальный момент является произведением нормального и касательного векторов, один из которых 3-мерный, бинормальный вектор представляется в его трехмерной проекции.
Г) Нормальное (действительное), касательное (мнимое) и бинормальное (комплексное) пространства 3-мерных x-подобных моментов.
1г) (, ,) касательный x-подобный момент и его ХУZ-проекции
2г) () - нормальный x-подобный момент и его ХУZ -проекции
3г) ()- комплексный (результирующий) x-подобный момент и его ХУZ- проекции.
4г); 5г); 6г);
7г); 8г)
9г), при
10г), при
11г); 12г)
Уравнениям x-подобных моментов инерциального движения в системе декартовых координат, соответствуют инвариантные уравнения в полярных координатах (угол восхождения радиуса равен углу склонения, угол восхождения радиуса равен минус удвоенный угол склонения), отражающие специ