Система математических расчетов MATLAB
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
?эффициентов
A =
0 -6 -1
6 2 -16
-5 20 -10
и начальными условиями x(0)
x0 = [ 1 1 1].
Использование матричной экспоненты для вычисления решения дифференциального уравне-ния в 101 точке с шагом 0.01 на интервале 0 ? t ? 1 записывается в виде
X = [ ];
for t = 0 : 0.01 : 1
X = [X expm(t*A)*x0];
end
Трехмерный график решения в фазовом пространстве может быть получен при помощи спе-циальной функции
plot3(X(1,:), X(2,:), X(3,:), -o)
Решение имеет вид спиральной функции сходящейся к началу координат (см. рис. ниже). Та-кое решение обусловлено комплексными собственными значениями матрицы коэффициен-тов А.
Собственные значения и собственные векторы
Собственным значением и собственным вектором квадратной матрицы А называются ска-ляр ? и вектор v, удовлетворяющие условию
Av = ?v
Диагональная декомпозиция
Имея диагональную матрицу ?, составленную из собственных значений ? матрицы А и мат-рицу V , составленную из соответствующих собственных векторов v, можно записать
AV = V?
Если матрица V несингулярная, на основании данного выражения получаем спектральное разложение матрицы А
А = V?V-1
Неплохой пример использования спектрального разложения дает рассмотренная выше мат-рица коэффициентов линейного дифференциального уравнения. Ввод выражения
lambda = eig(A)
дает следующий вектор-столбец собственных значений (два из них являются комплексно-сопряженными)
lambda =
-3.0710
-2.4645 + 17.6008i
-2.4645 - 17.6008i
Действительные части всех собственных значения являются отрицательными, что обеспечи-вает устойчивость процессов в системе. Ненулевые мнимые части комплексно-сопряженных собственных значений обуславливают колебательный характер переходных процессов.
При двух выходных аргументах, функция eig вычисляет также собственные векторы и выда-ет собственные значения в виде диагональной матрицы
.
[V,D] = eig(A)
V =
-0.8326 0.2003 - 0.1394i 0.2003 + 0.1394i
-0.3553 -0.2110 - 0.6447i -0.2110 + 0.6447i
-0.4248 -0.6930 -0.6930
D =
-3.0710 0 0
0 -2.4645+17.6008i 0
0 0 -2.4645-17.6008i
Первый собственный вектор (первый столбец матрицы V) является действительным, а два других являются комплексно-сопряженными. Все три вектора являются нормализованными по длине, т.е. их Евклидова норма norm(v,2), равна единице.
Матрица V*D*inv(V), которая в более сжатой форме может быть записана как V*D/V, равна, в пределах погрешностей округления, матрице А. Аналогично, inv(V)*A*V, или V\A*V, рав-на, в пределах погрешностей округления, матрице D.
Дефектные матрицы
Некоторые матрицы не имеют спектрального разложения. Такие матрицы называются дефек-тными или не диагонализируемыми. Например, пусть матрица А имеет вид
A =
6 12 19
-9 -20 -33
4 9 15
Для этой матрицы ввод [V, D] = eig(A) дает
V =
-0.4741 -0.4082 -0.4082
0.8127 0.8165 0.8165
-0.3386 -0.4082 -0.4082
D =
-1.0000 0 0
0 1.0000 0
0 0 1.0000
Здесь имеются два положительных единичных кратных собственных значений. Второй и третий столбцы матрицы V являются одинаковыми и поэтому полного набора линейно-неза-висимых собственных векторов не существует (и поэтому не существует обратная матрица V-1).
Сингулярное разложение матриц
Сингулярным значением и соответствующими сингулярными векторами прямоугольной ма-трицы A называются скаляр ? и пара векторов u и v такие, что удовлетворяются соотноше-ния
Av = ?u
ATu = ?v
Имея диагональную матрицу сингулярных чисел ? и две ортогональные матрицы U и V, сформированные из соответствующих собственных векторов, можно записать
AV = U ?
ATU = V ?
Поскольку U и V являются ортогональными матрицами, это можно записать в виде сингуляр-ного разложения
A = U ?VT
Полное сингулярное разложение матрицы А размера mхn включает mхm матрицу U, mхn матрицу ?, и nхn матрицу V. Другими словами, обе матрицы U и V являются квадратными , а матрица ? имеет тот же размер, что и A. Если A имеет намного больше строк чем столб-цов, результирующая матрица U может быть достаточно большой, но большинство ее столб-цов умножаются на нули в ? . В таких ситуациях может быть использована так называемая экономичная декомпозиция, которая сберегает как время так и память, за счет вывода матри-цы U размера mхn, матрицы ? размера nхn и той же матрицы V.
Спектральное разложение являе