Система математических расчетов MATLAB
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
°йти функцию, которая описывает взаимосвязь между некоторыми наблюдаемыми (или найденными экспериментально) переменными. Оп-ределение коэффициентов такой функции ведет к решению задачи переопределенной систе-мы линейных уравнений, то есть системы, у которой число уравнений превышает число не-известных. Указанные коэффициенты можно легко найти с использованием оператора обрат-ного деления \ (backslash). Допустим, вы производили измерения переменной y при разных значениях времени t.
t = [0 0.3 0.8 1.1 1.6 2.3];
y = [0.5 0.82 1.14 1.25 1.35 1.40];
plot(t,y,o); grid on
В следующих разделах мы рассмотрим три способа моделирования (аппроксимации) этих данных:
- Методом полиномиальной регрессии
- Методом линейно-параметрической (linear-in-the-parameters) регрессии
- Методом множественной регрессии
Полиномиальная регрессия
Основываясь на виде графика, можно допустить, что данные могут быть аппроксимированы полиномиальной функцией второго порядка:
y = a0 + a1t + a2t2
Неизвестные коэффициенты a0 , a1 и a2 могут быть найдены методом среднеквадратичес-кой подгонки (аппроксимации), которая основана на минимизации суммы квадратов отклоне-ний данных от модели. Мы имеем шесть уравнений относительно трех неизвестных,
представляемых следующей матрицей 6х3:
X = [ones(size(t)) t t.^2]
X = 1.0000 0 0
1.0000 0.3000 0.0900
1.0000 0.8000 0.6400
1.0000 1.1000 1.2100
1.0000 1.6000 2.5600
1.0000 2.3000 5.2900
Решение находится при помощи оператора \ :
a = X\y
a =
0.5318
0.9191
- 0.2387
Следовательно, полиномиальная модель второго порядка наших данных будет иметь вид
y = 0.5318 + 0.9191t 0.2387 t2
Оценим теперь значения модели на равноотстоящих точках (с шагом 0.1) и нанесем кривую на график с исходными данными.
T = (0 : 0.1 : 2.5);
Y = [ones(size(T)) T T.^2]*a;
plot(T,Y,-,t,y,o); grid on
Очевидно, полиномиальная аппроксимация оказалась не столь удачной. Здесь можно или по-высить порядок аппроксимирующего полинома, или попытаться найти какую-либо другую функциональную зависимость для получения лучшей подгонки.
Линейно-параметрическая регрессия
Вместо полиномиальной функции, можно было-бы попробовать так называемую линейно-параметрическую функцию. В данном случае, рассмотрим экспоненциальную функцию
y = a0 + a1?-t + a2t?-t
Здесь также, неизвестные коэффициенты a0 , a1 и a2 могут быть найдены методом наимень-ших квадратов. Составим и решим систему совместных уравнений, сформировав регресси-онную матрицу X, и применив для определения коэффициентов оператор \ :
X = [ones(size(t)) exp(- t) t.*exp(- t)];
a = X\y
a =
1.3974
- 0.8988
0.4097
Значит, наша модель данных имеет вид
y = 1.3974 0.8988?-t + 0.4097t?-t
Оценим теперь, как и раньше, значения модели на равноотстоящих точках (с шагом 0.1) и на-несем эту кривую на график с исходными данными.
Как видно из данного графика, подгонка здесь намного лучше чем в случае полиномиальной функции второго порядка.
Множественная регрессия
Рассмотренные выше методы аппроксимации данных можно распространить и на случай бо-лее чем одной независимой переменной, за счет перехода к расширенной форме записи. До-пустим, мы измерили величину y для некоторых значений двух параметров x1 и x2 и полу-чили следующие результаты
x1 = [0.2 0.5 0.6 0.8 1.0 1.1] ;
x2 = [0.1 0.3 0.4 0.9 1.1 1.4] ;
y = [0.17 0.26 0.28 0.23 0.27 0.24] ;
Множественную модель данных будем искать в виде
y = a0 + a1x1 + a2x2
Методы множественной регрессии решают задачу определения неизвестных коэффициентов a0 , a1 и a2 путем минимизации среднеквадратической ошибки приближения. Составим сов-местную систему уравнений, сформировав матрицу регрессии X и решив уравнения отно-сительно неизвестных коэффициентов, применяя оператор \ .
X = [ones(size(x1)) x1 x2];
a = X\y
a =
0.1018
0.4844
-0.2847
Следовательно, модель дающая минимальную среднеквадратическую ошибку аппроксима-ции имеет вид
y = 0.1018 + 0.4844x1 0.2847x2
Для проверки точности подгонки найдем максимальное значение абсолютного значения от-клонений экспериментальных и расчетных данных.
Y = X*a;
MaxErr = max(abs(Y - y))
MaxErr =
0.0038
Эта ошибка дает основание утверждать, что наша модель достаточно адекватно отражает ре-зультаты наблюдений.