Пространство и время вращения. Пятимерный физический мир
Информация - Философия
Другие материалы по предмету Философия
?смотрено) безотносительно точки зрения. (Вот оно и начало статистики! Начало тАЬберут-не беруттАЭ (годится -не годится. Подчеркиваю: именно так, потому что от этого до тАЬпокупают-не покупаюттАЭ есть некое, неравное нулю, расстояние.))
Как происходит измерение? То есть взаимодействие измерит. прибора с носителем свойства? Результат измерения - это указание прибора на некую точку шкалы.
Кстати, шкала необязательно должна быть линейной. Она должна быть такой, как реагирует прибор на данное свойство.
Таким образом, измерение - это функция между свойством и (первоначально) некоторой длиной или углом. (регулировка - это обратная функция. хотя в общем случае не обязательно должна фигурировать длина или угол) Следовательно, измерение (и регулировка) есть реализуемое соответствие между разнокачественными свойствами. Которое, повторюсь, не обязательно линейно и зависит это от прибора-реализатора (измерения). Или от процедуры измерения. (как, например, измерения силы игры в шахматы)
Смотрите, ведь спорт - это и есть измерение. Стоп, не всегда так. Но по кр. мере спорт - это сравнение.
Так как измерение - это преобразование одного свойства в другое (преимущественно в угол отклонения стрелки или напряжение), то развитие этого дела основано на открытии межпредметных эффектов. То, что такие эффекты существуют не только внутри физики, но и между химией и физикой, доказывается существованием концентрометров (но, правда, только определенных веществ).
Когда мы доживем до создания процедур (но объективных!) измерения психологических свойств? Когда будут открыты интерпсихофизические эффекты.
Математика протеория, инструмент или негодный инструмент?
Существуют ли числа в природе? Разумеется, нет. Потому что числа - это отображения количеств (натуральные) и величин (=результатов измерения свойств) (все остальные). Чтобы отобразить количества и величины, нужна система iисления - элемент технологии. Неверно также говорить и о том, что в природе существуют сами количества и величины, так как для получения требуются процедуры iета и измерения. Что же все-таки существует именно в природе, давая начало количествам и величинам? Дискретность (обособленность) предметов и измеримость свойств (или просто свойства?) Просто свойства, свойства предметов и процессов. То есть свойства не свойства вообще, а имеют конкретных носителей. Потому и измеримы.
Разобранный выше вопрос поднимается сейчас в связи с постановкой другого, более важного для судеб науки, вопроса: математика - это инструмент физики или её прототеория?
В самом деле, со времен Эйнштейна возникло такое течение (в физике): математика наша, физиков, путеводная звезда. Хотя, казалось бы, математика всего лишь предоставляет (предметным наукам) средства для отображения (через законы этих наук) добытых ими истин.
(И притом, что (до сих пор) есть науки, которым все достижения математики до сих пор не пригодились. И неизвестно, когда еще пригодятся.)
Иначе говоря, мир вовсе не устроен по законам математики.
Математика как прототеория физики - это интересная мысль. Но беспочвенная. Почему? Потому что математика, как и логика, если и прототеории, то сразу всех предметных (феноменальных) дисциплин, начиная с бухгалтерии и кончая физикой и т.д. Так как предмет изучения математики - числа и др. мат. объекты как таковые, с которыми (так или иначе) имеют дело все предметные дисциплины. Математика есть знание о математических объектах (МО), операциях над ними, их свойствах и преобразовании и решении математических высказываний. Базовыми мат.объектами являются числа.
Глядя на некоторые достижения современной математики, как-то теория групп, геометрия Лобачевского, Римана и им подобные, может сложиться впечатление, что математик это свободный художник в том плане, что он обязан соблюдать только правила логики. Что дело математика получать логически непротиворечивые вербальные конструкции. Что он совершенно не обязан искать интерпретации для этих конструкций и тем более предметно верифицировать их.
Но это, к сожалению, не так. То, что 2+3=5, в этом легко можно убедиться предметно, перекладывая iетные палочки. В том, что 5,3+3,7=9, предметно убеждает сложение отрезков соответствующих длин. Теорема Пифагора была открыта сначала путем измерений и только намного позже доказана (верифицирована) вербально.
Начало чистой математике было положено тогда, когда в математике в порядке вещей стало произвольно формулировать аксиомы теории, то есть с самого начала объявлять себя выше предметного (материального) мира. Зачем это было сделано? Наверно, во-первых, в погоне за сногсшибательностью положений теории, а во-вторых с целью во что бы то ни стало создать новую теорию (ни о чем).
Поэтому само собой понятно, почему упомянутые выше геометрии ни о чем в 1-ую очередь нашли применение в аналогичной физической дисциплине космологии. Но только по названию таковой. А на деле космографии (подобно географии до средневековья, когда мореплавание было развито весьма слабо и поэтому географы того времени кормили народ баснями либо собственного сочинения либо переписанными у коллег. Естественно, что лучше шли в народ (раскупались) те басни. в которых было больше фантазии.). Тем временем действительная космология развивалась в недрах астрономии и астрофизики.)
Казалось бы, все точки над тАЬитАЭ расставлены, и конечный вывод о функции математики для предметных наук сделан.
Однако сейчас существуют и более радикальные взгляды на совре