Производная и ее применение в алгебре, геометрии, физике
Статья - Математика и статистика
Другие статьи по предмету Математика и статистика
сферы) лежит в плоскости боковой грани пирамиды, а вершины другого основания принадлежат сфере. Какой должна быть высота призмы, чтобы ее объем был наибольшим? Найти этот объем.
Решение. SABC правильная треугольная пирамида (рис), вписанная в сферу радиусом R,
SO*1,5 = AD,
LMN правильная четырехугольная призма.
Найти. Vпр = f(LM).
Пусть SO = H, тогда AD = 1,5H;
SO1 = R радиус сферы; LM = x высота призмы.
?SKO1 подобен ?SOD => O1K/OD = SO1/SD => OK1 = OD*SO1/SD.
Из ?AO1O: R2 = AO2 + O1O2 = (2AD/3)2 + (AD*2/3 - R)2,
R2 = 4AD2/9 + 4AD2/9 AD*R*4/3,
8AD2/9 = AD*R*4/3 => AD = 3R/2.
Отсюда OD = R/2;
AO1 = R и SO1 = R; _
SD = vR2 + R2/4 = Rv5/2, _
OK1 = 2*R*R/(2Rv5) = Rv5/5;
O1K = Rv5/5.
Из ?O1FN => R2 = (O1K + x)2 + NF2,
NF = vR2 R2/5 2x(v5)2/5 x2 ,
Sосн = 2NF2. _
Vпр = Sосн*x = 2(R2 R2/5 2xv5 R/5 - x2)*x;
Vпр = 2(4R2x/5 2x2v5 R/5 - x3);
Vпр(x) = 2(4R2/5 2xv5 R/5 - 3x2) = 0; _
x 1,2 = (2Rv5/5 + v4R2/5 + 12R2/5)/(-3) = (2Rv5/5 + 4R/v5)/(-3);
x = 2v5 R/15 _ _
Vпр.max = 2(4R2*2v5R/(5*15) 2v5R*4R2/(45*5) - _ 40v5R3/(225*15)) = 16R3v5(1 1/3 5/45)/75 = 16v5R3/135.
Ответ: 16v5R3/135 м3 при H = 2v5R/15.
Задача 9. В конус вписан цилиндр, одно из оснований которого лежит в плоскости основания конуса, а окружность другого основания принадлежит боковой поверхности конуса. Правильная четырехугольная призма расположена так, что ее нижнее основание лежит в плоскости верхнего основания цилиндра, вершины верхнего основания принадлежат боковой поверхности конуса. Отношение длины диагонали основания призмы к ее высоте равно отношению длины диаметра цилиндра к его высоте. При какой высоте цилиндра объем призмы будет наибольшим? Найти этот объем призмы, если высота конуса H и радиус основания R.
Дано. ASO конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
?CSD подобен ?ASO: CD/AO = SD/SO;
CD/R = (H x - h)/H;
CD = R(H x -h)/H.
?BSE подобен ?ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H x - h)/(H - x) = h/x => h = (Hx x2)/H
Тогда CD = R(H x (Hx x2)/H)/H = R(H2 Hx Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
V(x) = 2R2((H - x)5 5(H - x)4 x)/H5 = 0,
(H x) 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при H/6, Vmax = 2R2H*55/66.
В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 b/r, где a и b положительные постоянные, r расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные графики зависимости U(r) и F(r).
U = a/r2 b/r; Решение:
a и b counts; Для определения r0 соответствующего равновесному
r0 ? положению частицы исследуем f = U(r) на экстремум.
Fmax ? Используя связь между потенциальной энергией поля
U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3 b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 b/r31 = - b3/27a2;
U(r) = 0; при r = a/b; U(r)min при r = 2, a/b = r0;
F = 0; F(r)max при r = r1 = 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Определ