Аналитическая химия

Методическое пособие - Химия

Другие методички по предмету Химия

?ает даже при рН=9 или осаждение бывает неполным. Полное осаждение происходит при действии сильных оснований, а в присутствии солей аммония гидрат окиси магния Мg(ОН)2 остается в растворе.

Поэтому магний относят к первой группе катионов. Учитывая вышеизложенное, при проведении качественных реакций необходимо указывать не только характер среды: кислая либо щелочная, но и точное значение рН. Методы определения рН среды: колориметрический и потенциометрический. Наиболее точный потенциометрический метод, который осуществляется с помощью прибора потенциометра или иономера. Прибор необходимо предварительно подготовить и произвести настройку с помощью тест-стандартов или нормодоз, т. е. растворов с известным значением рН, измерение рН осуществляется с помощью электролитической ячейки и двух электродов. Колориметрический метод основан на применении реактивов, изменяющих свою окраску в зависимости от концентрации водородных ионов, которые называются индикаторами Это слабые органические кислоты или основания недиссоциированные молекулы которых имеют различную окраску, они называются кислотно-основными индикаторами. Лакмус, например, содержит азолитминовую кислоту недиссоциированные молекулы которой красного цвета, а анионы синего. Добавление к раствору кислоты или щелочи изменяет рН раствора с чем и связано изменение окраски, рассматриваемых индикаторов.

Важным условием соблюдение значений рН является при определении амфотерных катионов 4-ой группы. - lg [Н+]- -lg [ОН-]= lgКН2О = 14. Для приблизительного определения рН среды в ходе качественного анализа чаще всего пользуются следующими индикаторами: метиловым оранжевым, метиловым красным, лакмусом, фенолфталеином, феноловым красным, малахитовым зеленым и др. К отдельным пробам испытуемого раствора добавляют по 1 - 2 капли раствора каждого индикатора. При этом нужно знать какую окраску имеет используемый индикатор в зависимости от рН среды. Например лакмус (или лакмусовая бумажка) краснеет в кислой среде при рН 10; начиная от рН 8,2 и меньше он бесцветен. Универсальные индикаторы, например, ЗИВ-1, представляет собой сухую смесь из 5-и индикаторов: диметиламиназобензола, бромтимолового синего, метилового красного, фенолфталеина и тимолфталеина. Готовая смесь в ампулах, в количестве 0,16 г растворяется в 100 мл 80 %-го спирта. В зависимости от рН раствора универсальный индикатор приобретает окраску в соответствии со шкалой. Действие одноименных ионов.

Степень электролитической диссоциации вещества зависит не только от его концентрации в растворе, но и от добавления в раствор других электролитов. Степень диссоциации слабого электролита можно понизить, добавляя в раствор сильный электролит, содержащий ион, одноименный с первым электролитом. Это явление объясняется с точки зрения закона действующих масс и константы равновесия реакции диссоциации. Предлагается самим студентам объяснить изменение степени диссоциации раствора уксусной кислоты при добавлении уксуснокислого аммония или натрия и раствора аммиака при добавлении раствора хлорида аммония. Т. о. степень диссоциации слабого электролита понижается при введении в раствор какого-нибудь сильного электролита содержащего одноименный ион. Растворы, рН которых почти не изменяется от прибавления небольших объемов сильных кислот или щелочей, а также от разбавления называют буферными растворами или буферными смесями. Они представляют собой смеси электролитов, содержащие одноименные ионы.

Например, ацетатный буферный раствор - это смесь уксусной кислоты и ацетата натрия, аммонийный буферный раствор - смесь гидрата окиси аммония и хлористого аммония. Ацетатная смесь проявляет свое буферное действие только до тех пор, пока концентрация прибавленной кислоты или щелочи не превысит приблизительно 0,08 моль/л. Количество молей сильной кислоты или сильного основания, прибавление которого к 1 л буферного раствора изменяет его рН на единицу, характеризует буферную емкость раствора. Следовательно, буферная емкость измеряется количеством г-экв или моль/л сильной кислоты или сильного основания, которое необходимо добавить к 1 л буферной системы, чтобы изменить его значение рН на единицу. Буферным действием обладают также смеси кислых солей с различной замещенностью водорода металлом. Например, в буферной смеси дигидрофосфата и гидрофосфата натрия первая соль играет роль слабой кислота, а вторая - роль её соли. Фосфатный буферный раствор (NаН2РО4 + NаНРО4) поддерживает рН 6,8. Т. о. варьируя концентрации слабой кислоты и её соли, можно получить буферные растворы с разными значениями рН. Примерами буферных действий в природе является кровь, лимфа, почва. Для вычисления рН в буферных смесях применяют уравнение рН = рКк - lg(ск/сс), где рК является силовым показателем кислоты или это логарифм константы диссоциации кислоты; ск - концентрация кислоты, а сс - концентрация соли. Указанное уравнение получено после логарифмирования уравнения константы диссоциации слабой кислоты, входящей в буферную смесь. Для смесей слабых оснований и их солей рОН = рКо - lg(со/сс). Учитывая, что рН = рОН = 14, можно написать рН = 14 - рОН = 14 - рКо + lg(со/сс). Т.о. 1. мах буферная емкость набл-ся у смесей содержащих равные концентрации компонентов; 2. По мере добавления к буферному раствору кислоты или щелочи устойчивость его к изменению рН постепенно уменьшается. 3. Буферная емкость раство?/p>