Анализ производства и реализация товаров предприятия
Курсовой проект - Экономика
Другие курсовые по предмету Экономика
? одного года.
Для рядов внутригодовой динамики с ярко выраженной основной тенденцией развития можно использовать формулу:
интервал абсолютный прирост динамика
, (1.2.4.1)
где: yi фактические уровни;
yti теоретические (выравненные) уровни;
n число лет.
Если ряд не содержит ярко выраженной тенденции в развитии, то индексы сезонности исчисляются по эмпирическим данным без их предварительного варьирования.
Тогда формула расчета будет следующая:
, (1.2.4.2)
где: общий для анализируемого ряда динамики средний уровень.
1.3 Показатели вариации
Вариацией признаков называется наличие различий в численных значениях признаков у единиц совокупности явлений. Существует пять обобщающих показателей вариации: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратичное отклонение, коэффициент вариации.
Размах вариации абсолютная величина разности между максимальными и минимальными значениями:
, (1.3.1)
где: R размах вариации;
максимальное значение изучаемого признака;
минимальное значение изучаемого признака.
Среднее линейное отклонение от средней представляет собой среднюю арифметическую из абсолютных отклонений конкретных вариантов от их среднего значения:
; , (1.3.2а, б)
где: для первичного ряда;
для вариационного ряда.
Дисперсия, или средний квадрат отклонений рассчитывается по формулам:
; . (1.3.3а, б)
Среднее квадратическое отклонение от средней высчитывается по формуле:
. (1.3.4)
Коэффициенты вариации:
; . (1.3.5а, б)
Кроме рассмотренных показателей имеются другие показатели, которые характеризуют структуру рядов распределения, например мода и медиана.
Мода это значение признака, наиболее часто встречающееся в изучаемых явлениях.
Мода в интервальных рядах высчитывается по формуле:
, (1.3.6)
где: Мо мода;
xmo нижняя граница модального интервала;
imo величина модального интервала;
fmo частота соответствующая модальному интервалу;
fmo-1 частота предшествующая модальному интервалу;
fmo+1 частота интервала следующего за модальным.
Медиана величина, которая делит численность упорядоченного ряда на 2 равные части, одна имеет значение варьирующего признака меньше чем средний вариант, а другая больше.
Медиана в интервальных рядах высчитывается по формуле:
, (1.3.7)
где: Me медиана;
xmе нижняя граница медианного интервала;
f сумма частот ряда;
Sme-1 сумма частот, накопленная до медианного интервала;
Fme частота медианного интервала.
Наряду с медианой для более полной характеристики структуры изучаемого явления применяют квартили. Квартили делят ряд по сумме частот на 4 равные части. Вторым квартилем является медиана. Формулы для остальных квартилей в интервальном ряду имеют вид:
; , (1.3.8)
где: xQ1 и xQ3 нижние границы соответствующих квартильных интервалов;
iQi величина соответствующего интервала;
SQ1-1 и SQ3-1 накопленные частоты интервалов, предшествующих соответствующим квартильным;
fQ1 и fQ3 частоты соответствующих квартильных интервалов.
Квартильное отклонение считается по формуле:
. (1.3.9)
Относительный показатель квартильной вариации:
. (1.3.10)
Коэффициент осцилляции:
. (1.3.11)
Для сравнительного анализа степени асимметрии рассчитывают показатель асимметрии:
, (1.3.12)
где: 3 центральный момент 3го порядка.
, . (1.3.13а, б)
Степень существенности этого показателя оценивается с помощью средней квадратичной ошибки:
. (1.3.14)
Если , то асимметрия существенна.
Для симметричных распределений рассчитывается показатель эксцесса:
, (1.3.15)
где: 4 центральный момент четвертого порядка.
; . (1.3.16а, б)
Средняя квадратичная ошибка эксцесса рассчитывается по формуле:
. (1.3.17)
Если , то эксцесс существенен.
1.4 Индексы
Индексы особые относительные показатели, которые дают количественно-качественную оценку результата изменения соответствующих явлений во времени, в пространстве и по сравнению с планом.
Индексы могут быть рассчитаны на базисной или цепной основе. Индивидуальные индексы себестоимости на базисной и цепной основе имеют вид:
; , (1.4.1а, б)
где: iz, индивидуальный индекс себестоимости продукции;
zi, себестоимость в текущем периоде;
z0, zi-1 себестоимость в базисном и предшествующем периоде.
Индивидуальные индексы объема производства на базисной и цепной основе имеют вид:
; , (1.4.2а, б)
где: iq индивидуальный индекс объема продукции;
qi объем произведенной продукции в текущем периоде;
q0, qi-1 объем продукции в базисном и предшествующем периоде.
Индивидуальный индекс затрат на производство на базисной и цепной основе:
; . (1.4.3а, б)
Агрегатный ?/p>