Основы химии
Методическое пособие - Химия
Другие методички по предмету Химия
Расположение гибридных атомов при sp-гибридизации.
При sp-гибридизации молекулы имеют линейную конфигурацию. Например, молекула BeCl2 (ClBeCl).
sp2-гибридизация. Перестрой электронных облаков за счет одного s-облака и двух р-облаков, приводит к образованию трех sp2-гибридных облаков, расположенных друг относительно друга под углом 1200.
P
1200
S
P sp2-гибридизация
исходные гибридные
облака облака
Рис.4.15. Расположение электронных оболочек при sp2-гибридизации.
sp2-гибридизация дает треугольную конфигурацию молекул. Такую конфигурацию имеет, например, молекула BCl3.Cl
BCl
Cl
Рис.4.16. sp2-гибриди-
зация азота и пирами-
sp3-гибридное молекула дальная конфигура-
состояние атома азота NH3 ция молекулы NH3.
Рассмотрим молекулы NH3 и Н2О. В молекуле NH3 электронные облака центрального атома азота гибридизированы. Тип гибридизации sp3. Однако во взаимодействие вступили только три гибридных орбитали, содержащих по одному электрону. На четвертой гибридной орбитали находится два электрона и поэтому она во взаимодействии с водородом не участвует. Хотя азот имеет sp3гибридное состояние, но конфигурация молекул не тетраэдрическая, а пирамидальная, образованная как бы за счет p3-гибридных облаков (рис.4.16.).
В молекуле Н2О атом кислорода находится в sp3-гибридном состоянии. Но на двух гибридных орбиталях содержится по два электрона и только две остальных, имеющих по одному электрону, вступают во взаимодействие с водородом. Получается следующая картина: при sp3-гибридном состоянии электронных облаков атома кислорода молекула воды имеет угловую конфигурацию, образованную только за счет гибридных атомов.(рис.4.17.)
а) б) в) О
Н Н
sp3-гибридное состояние 104,50
кислорода
Рис.4.17. sp3-гибридное состояние кислорода (а); конфигурация молекулы Н2О (б,в)
Зависимость пространственных конфигураций молекул от типа гибридизации дана в таблице 4.1.
Таблица 4.1.
Тип гибридизацииКонфигурация молекулПримерыspлинейнаяBeCl2, ZnCl2, Co2.sp2треугольнаяH2O, H2S.sp3тетраэдрическаяBCl3, BF3, Co32.sp3 (только p2 занята)угловаяCH4, NH4+, BH4.sp3 (только p3 занята)пирамидальнаяSbH3, NH3.sp2dквадратнаяPCl42.sp3dбипирамидальнаяPtCl5.sp3d2октаэдрическаяSF6.
4.3.2. Метод молекулярных орбиталей.
К сожалению метод валентных связей, имеющий хорошую наглядность, не смог объяснить ряд особенностей отдельных молекул и устойчивость частиц. Так, метод ВС не мог объяснить, почему в молекуле O2 остаются неиспользованными два электрона и молекула обладает магнитными свойствами, почему существуют и являются достаточно устойчивыми ионы Н2, Ne2+, O2+ и др.? Ответ на многие “почему?” был получен после введения в теорию химической связи метода молекулярных орбиталей (метода МО).
Метод молекулярных орбиталей базируется на следующих положениях:
- Электроны в молекулах находятся на молекулярных орбиталях, как у атома на атомных.
- молекулярные орбитали получаются при складывании атомных орбиталей.
- Из двух атомных орбиталей образуется две молекулярные орбитали, одна из которых имеет более низкую энергию.
- Орбиталь с более низкой энергией называется связывающей, а с более высокой разрыхляющей.
- Образуются как сигма (s-), так и пи (p-) молекулярные орбитали.
- Распределение электронов по молекулярным орбиталям происходит в соответствии тех же принципов, что и по атомным: принципа наименьшей энергии, принципа Паули и правила Гунда.
При взаимодействии двух s-атомных образуется две молекулярные орбитали: ssсв и ssраз (рис.4.18.).
ssраз
+
S S ssсв
Рис.4.18. Схема образованияss -молекулярных орбиталей.
Р-атомные орбитали в зависимости от способа взаимодействия способны образовывать два типа молекулярных орбиталей spx-МО и ppy(pz)-МО. (рис.4.19. и 4.20.)
spxраз
+
Px Px spxсв
Рис.4.19. Схема образования spx МО.
ppzраз
+
ppzсв
Pz Pz
Рис.4.20. Схема образования ppz МО.
Рассмотрим с позиции метода МО несколько молекул.
Молекула Н2. У каждого атома водорода имеется на атомных орбиталях по одному s-электрону. При взаимодействии водородов атомные орбитали объединяются и образуют, как показано на рис.4.18. две молекулярные орбитали: ssсв и ssраз. Диаграмма взаимного расположения связующих и разрыхляющих молекулярных орбиталей показана на рис.4.21.
По принципу наименьшей энергии и принципу Паули оба электрона располагаются на ssсв-орбитале. Орбиталь ssраз остается свободной.
Метод МО позволяет оценивать проч-
А.О. МО А.О. ность химической связи путем расчета
Н Н2H кратности связи. Кратность связи (К.С.)
ssраз определяется как полуразность числа
электронов на связующих орбиталях (nсв) и
числа электронов на разрыхляющих (nраз)
1S1S КС= nсв nраз /2
ssсв Для молекулы водорода кратность связи
Рис.4.21. Энергетическая диаграмма равна 1. КСн2=20/1=1