Основы химии
Методическое пособие - Химия
Другие методички по предмету Химия
p;
Силы притяжения или сцепления между молекулами называют вандерВальсовыми силами, по имени голландского ученого ВандерВальса, изучавшего межмолекулярное взаимодействие.
Межмолекулярное взаимодействие зависит прежде всего от расстояния между центрами взаимодействующих молекул. На больших расстояниях вандервальсовы силы ничтожно малы и начинают проявляться лишь на расстояниях порядка 10А. Если две молекулы приближать друг к другу, то на определенном расстоянии между ними начинают действовать силы притяжения и отталкивания. Соотношение между этими двумя силами можно выразить результирующей кривой (рис.3.37.). Силы притяжения между двумя сближающимися молекулами сначала растут, достигают некоторого максимума, а затем резко уменьшаются в следствии сильного возрастания сил отталкивания. Расстояние между молекулами d0 отвечает равновесному состоянию, когда силы притяжения и отталкивания двух сближающихся молекул уравновешиваются, d0 при этом равно 47А. Энергия межмолекулярного взаимодействия невелика и составляет около 847 кДж/моль, т.е. в 10100 раз меньше энергии обычного химического взаимодействия.
Молекулы как валентнонасыщенные частицы не могут образовывать между собой валентных связей. Какова тогда природа вандерВальсовых сил?
В А
l d l
l d l
Рис.3.38. Ориентационное дипольное
взаимодействие молекул.
l l
Так как молекулы можно разделить на полярные и неполярные, то возможны три типа взаимодействий:
а) между полярными молекулами (дипольное);
б) между полярной и неполярной молекулами (индукционное);
в) между неполярными молекулами (дисперсионное).
Рассмотрим каждый из этих типов взаимодействий.
Диполное взаимодействие (ориентационное) это взаимодействие двух полярных молекул. Сущность его сводится к тому, что положительный коней одной молекулы А притягивает к себе отрицательный конец другой В. Переориентировка диполей протекает до тех пор, пока притяжение между ними не уравновесится силами отталкивания (рис.3.38.). В результате взаимодействия диполей потенциальная энергия системы уменьшается, это равносильно усилению связи между молекулами. Чем больше длина диполей l взаимодействующих молекул, тем больше энергия дипольного взаимодействия. Так как тепловое движение молекул нарушает ориентацию, то естественно повышение температуры ослабляет связи ориентационного (дипольного) взаимодействия.
Индукционное взаимодействие взаимодействие полярной и неполярной молекул. В неполярной молекуле значение постоянного дипольного момента равно нулю mр=0. Под действием электрического поля полярной молекулы может индуцироваться в неполярной молекуле диполь с mi =0 и и последняя становится индуцированнополярной. Между постоянным диполем молекулы А индуцированным диполем молекулы В возникает индуционное взаимодействие (рис.42.). Не все полярные молекулы обладают одинаковой способностью к индуцированию: чем выше поляризуемость молекулы, тем больше величина возникающего в ней индуцированного момента и тем сильнее индукционное взаимодействие.
А В
l l=0 l=0 l=0
l li li li
Рис.42. Индукционное взаимо Рис.43. Дисперсионное взаимо
действие молекул. действие молекул.
Так как индуцирование приводит к изменению или деформации электронной оболочки молекулы, то этот тип взаимодействия иногда называют деформационным. Индуцирование или деформация неполярной молекулы зависит от напряженности поля полярной молекулы, а поэтому индуцированный эффект не зависит от температуры.
Дисперсионное взаимодействие взаимодействие двух неполярных молекул. Хотя у обеих неполярных молекул дипольный момент равен нулю, вследствии пульсирующего движения электронного облака (или движения электронов внутри молекулы) в одной из молекул на мгновение возникает незначительный дипольный момент, который индуцирующе действует на соседнюю молекулу, и т.д. Между этими диполями возникает дисперсионное взаимодействие (рис.43.), которое тем больше, чем легче поляризуется молекула или атом и чем меньше расстояние между взаимодействующими молекулами. На дисперсионном взаимодействии основан процесс сжижения благородных и двухатомных элементарных газов, молекулы которых не имеют дипольного момента.
Следует отметить, что для реальных молекул установить какой-либо единственный тип взаимодействия невозможно. Практически при взаимодействии молекул проявляются в определенной степени все три типа взаимодействия. Вклад каждого из рассмотренных типов межмолекулярного взаимодействия зависит в основном от двух свойств взаимодействующих молекул: полярности и поляризуемости (деформируемости). Чем выше полярность, тем значительнее роль ориентационных сил; чем больше деформируемость, тем значительнее роль дисперсионных сил. Индукционные силы зависят от обоих факторов.
Все три типа сил межмолекулярного взаимодействия имеют одну и ту же природу электростатическую и обуславливаются электрическими полями молекул или атомов.
Глава 5.
Агрегатные состоян?/p>