Основы химии
Методическое пособие - Химия
Другие методички по предмету Химия
?ие
валентных электронов в
возбужденном состоянии3s1
3s13p1
3s13p2
3s13p3
3s13p33d1
3s13p33d2
3s13p33d3Высшая валентностьIIIIIIIVVVIVIIТак как у элементов второго периода отсутствует d-подуровень, то азот, кислород и фтор не могут достигать валентности равной номеру группы. У них нет возможности распаривать электроны. У фтора максимальная валентность может быть равной единице, у кислорода два, а у азота три.
Следует сделать здесь примечание. в данном случае разговор идет о главной (основной) валентности. Дальше будет показано, что наряду с основной валентностью атомы элементов способны проявлять и побочную валентность за счет образования дополнительных донорно-акцепторных связей.
Для большинства d-элементов высшая валентность может отличаться от номера группы. Валентные возможности d-элемента в конкретном, случае определяются структурой электронной оболочки атома. d-элементы могут иметь минимальную валентность выше номера группы (медь, серебро) и ниже номера группы (железо, кобальт). Например, серебро, находящееся в побочной подгруппе первой группы имеет соединения с валентностью III. Ag2O3, AgCl3. Это выше номера группы. В тоже время кобальт в соединение проявляет валентность не выше III. (Co2O3), что ниже, чем номер группы (VIII).
С понятием валентность близко соприкасается второе понятие степень окисления.
Степень окисления это тот заряд, который атом имеет в ионном соединении или имел бы, если бы общая электронная пара полностью была бы смещена к более электроотрицательному элементу в ковалентном соединении. Следовательно, степень окисления в отличии от валентности характеризуется не только величиной, но и зарядом (+) или (). Валентность имеет только величину и не имеет знака. Например, в сульфате натрия NaI2SVIOII4 валентность натрия, серы и кислорода равны соответственно I, VI, II. А степень окисления будет натрия (+1), серы (+6), кислорода (2). Валентность и степень окисления по величине не всегда совпадают. Так, в следующих соединениях CH4, CH3OH, HCOH, HCOOH, валентность углерода везде равна (IV), а степень окисления 4, 2, 0, +2 соответственно.
Для определения валентности элементов в соединениях следует использовать не только положением элемента в определенной группе в периодической системе, но и валентным так называемых эталонных элементов. К эталонным элементам относят такие, которые всегда имеют одинаковые значения валентности. Среди них:
Водород Н (I), Калий К (I)
Кислород О (II), Натрий Na(I)
Магний Mg (II), Алюминий Al(III)
Фтор F (I).
Что касается степени окисления то эти элементы могут служить эталонным для определения степени окисления других элементов в соединениях.
K+, Na+ (+1), H+ (+1) (за исключением гидридов)
Mg+2, Ca+2 (+2), F-1 (1)
Al+3 (+3), Cl-1 (1) (за исключением соединений с кислородом и фтором)
О-2 (2) (за исключением соединений с фтором)
3.4.7. Характер изменения восстановительных и окислительных свойств элементов.
Если в химических реакциях элемент отдает электроны и повышает степень окисления, то он проявляет восстановительные свойства. Наоборот, в случае присоединения элементом электронов и понижении степени окисления, элемент проявляет окислительные свойства. Восстановительные и окислительные свойства элементов зависят от радиусов атомов. Чем меньше радиус атома, тем труднее элемент отдает электроны и слабее проявляет восстановительные свойства. В этом случае у элемента активнее будут проявляться окислительные свойства. В периодах слева направо восстановительные свойства элементов уменьшается, а окислительные увеличиваются. В группах сверху вниз увеличиваются восстановительные свойства и уменьшаются окислительные.
Li Be B C N O F
увеличение
Na окислительных свойств
элементов
K
Rb
Cs увеличение восстановительных свойств элементов
Fr рис. 3.7.
3.4.8. Характер изменения свойств однотипных соединений.
Поместим в ряд однотипные соединения галогенов галогенводороды и рассмотрим, как изменяются их свойства (устойчивость соединений, степень диссоциации, сила кислоты, восстановительные свойства) в пределах главной подгруппы седьмой группы. Обнаруживается четкая закономерность, как и для простых элементов.
HFHClHBrHJ
возрастание радиуса галогена
увеличение
прочности
соединения увеличение степени
диссоциации
усиление кислотных
свойств
увеличение восстановительной активности галогениона
Так в направлении от фтора к йоду идет возрастание радиусов атомов, следовательно в этом направлении уменьшается прочность соединений. Чем больше радиус галогенов, тем менее прочно с ним связан водород. Сравним энергии Гиббса образования нескольких молекул.
DG0обр.
кДж/мольHFHClHBr2739553Наиболее отрицательное значение энергии Гиббса образования имеет молекула HF, следовательно, она самая прочная. При переходе от HF к HBr DG0обр. уменьшилось более, чем в пять раз. Соответственно, прочность молекул резко падает. Растворы галогенводородов в воде являются кислотами. При переходе от HF к HI увеличивается степень диссоциации кислоты, усиливаются кислотные свойства галогенводородной кислоты. (сила кислоты определяется концентрацией ионов Н+, вернее ионов гидроксония Н3О+).
кислотаHFHClHBrНIстепень диссоцации a, 88990В направлении от фтора к йоду увеличивается восстановительная способность галоге