Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
±ольшие трудности и, например, по мнению автора работы [97], не всегда оправдано. Кроме того, аналитическое определение величины FД затрудняется еще и тем, что схема закрепления деталей при точечной сварке, например, посредством уже сваренных точек весьма неопределенна. Она не имеет близких аналогов среди идеализированных схем закрепления пластинок в известных [96…98] аналитических решениях этой задачи.
В экспериментальных исследованиях силового взаимодействия деталей при наличии зазоров [91, 99, 100], величина усилия FД, необходимая для сближения свариваемых деталей, определялась как функция комплексного влияния ряда технологических факторов точечной сварки (рис. 2.5):
FД = F(t, t*, u, ?, ?, s, RЭ),
где t расстояние между сваренными точками; t* расстояние до соседних сваренных точек; u расстояние от кромки листа до центра свариваемой точки, которое, как правило, равно половине ширины В нахлестки; ? угол раскрытия зазора в нахлестке; ? величина зазора в месте сварки; s толщина деталей; RЭ радиус сферы рабочей поверхности электродов.
Так как при точечной сварке зона нагрева ограничена и составляет относительно небольшую часть зоны упругопластической и упругой деформации деталей при их сближении, то считается, что усилие прогиба деталей в процессе сварки не изменяется [95]. Такое допущение позволяет проводить эксперименты по определению FД на холодных образцах вне сварочной машины.
Моделирование зазоров производилось по известной методике, показанной на (рис. 2.6). В этом случае образцы 1 в местах имитации уже сваренных точек сжимались специальными струбцинами 2 усилием 2…8 кН, которое вполне обеспечивало жесткое закрепление образцов толщиной 1…4 мм при их деформировании электродами в месте сварки (рис. 2.6, а). Величина зазора ?, а также угол ? раскрытия зазора в нахлестке устанавливались прокладками 3. Кроме того, зазоры моделировали и по известной методике [95], в соответствии с которой образцы сваривали через размерные прокладки (рис. 2.6, б).
Деформация образцов производилась на экспериментальной установке изготовленной на базе разрывной машины УММ-5 (рис. 2.7).
В ней верхний 1 и нижний 2 электрододержатели с установленными в них электродами закреплены в губках разрывной машины 3 и 4. На нижнем электрододержателе 2 жестко закреплена направляющая скоба 5, в направляющей 6 которой верхний электрододержатель 1 установлен с возможностью осевого перемещения. На кронштейне 7, жестко закрепленном на верхнем электрододержателе 1, установлен индикатор перемещения часового типа 8, установка нуля на котором производится регулировочным винтом 9. Деформируемые детали 10 помещаются между электродами перпендикулярно их оси. Поддерживающее приспособление 11 служит для фиксации пространственного положения деформируемых деталей.
Прогиб ? деформируемых деталей 10 измерялся с точностью 0,005 мм по сближению h электродов 1 и 2, а величина деформирующего усилия измерялась по шкале разрывной машины с точностью 10 Н. Погрешность ?h измерения сближения деталей h учитывалась как среднестатистическая поправка. Она появляется из-за деформации элементов конструкции установки при нагружении, внецентренного расположения индикатора перемещения и вдавливания электродов в детали. Величина погрешности ?h, которую определяли при сжатии одного листа, зависит от сжимающего усилия FД (рис. 2.8). В итоге прогиб одного листа определялся по выражению
.
В экспериментах использовались образцы из сплавов АМц, Д16Т, АМг6 и МА2-1 размером 300 400 мм и толщиной 1...5 мм. Измерения деформирующего усилия FД при сочетании факторов каждой ячейки производились три раза.
Для определения значимости влияния на величину FД усилия сопротивления деталей их сближению до соприкосновения семи технологических факторов точечной сварки, которые показаны выше (рис. 2.5), планировались четырёхфакторный эксперимент в пяти уровнях (латинский квадрат) и трехфакторный эксперимент в семи уровнях по известным методикам [101…105].
При проведении четырехфакторного эксперимента в пяти уровнях осуществляли проверку значимости влияния на величину FД факторов t*, ?, RЭ и s при неизменных значениях параметров t, ? и u. В результате получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, для условий данного эксперимента равным 3,9, следующим образом:
; ;
; .
Таким образом, из этого эксперимента следует, что влияние фактора Д, т. е. толщины деталей s, на величину FД значимо, а влияние факторов А, В и С, т. е. t*, ? и RЭ не значимо.
Проверку значимости влияния исследуемых факторов t, ?, u на величину FД при неизменных значениях параметров t*, ?, RЭ и s осуществляли проведением трехфакторного эксперимента в семи уровнях. В результате также получены отношения дисперсий факторов к дисперсии воспроизводимости, которые соотносятся с критерием Фишера, который для условий данного эксперимента равен 3,9, следующим образом:
; ; .
Следовательно, все исследуемые в данном эксперименте факторы А, В и С, т. е. расстояние между сваренными точками t, величина зазора в месте сварки ? и расстояние от кромки листа