Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
/i> приводит к увеличению контурной площади контакта и увеличению искажения его формы (рис. 2.4, б). Причем увеличение kФ происходит до некоторого значения t, зависящего от величины зазора ?, а затем с увеличением t эллипсоидность контакта kФ уменьшается. Это также объясняется изменением вида деформации деталей в контакте. Так, увеличение SК при уменьшении u и увеличении t можно объяснить увеличением усилия сжатия F в площади контакта, так как усилие, которое затрачивается на деформацию деталей при их сближении при таком изменении t и u уменьшается. Уменьшение же kФ при увеличении u объясняется переходом от изгиба детали в месте сжатия к ее прогибу по типу мембраны. Начальное увеличение kФ при увеличении t, наоборот, обусловлено переходом от прогиба детали по типу мембраны к ее изгибу, а дальнейшее уменьшение kФ обусловлено уменьшением искривления деталей при увеличении t.
При увеличении зазора ? (рис. 2.4, в) площадь контакта SК вначале уменьшается, что можно объяснить уменьшением усилия в площади контакта, а затем резко увеличивается вплоть до первоначальных размеров. Последнее обусловлено тем, что при достижении зазором некоторой величины ?, которое зависит от конкретного сочетания значений t и u, происходит резкий переход от изгиба детали к её прогибу по типу мембраны. Дальнейшее же увеличение забора приводит к монотонному уменьшению площади контакта, причиной чего является уменьшение усилия сжатия в площади контакта. Эллипсоидность контакта при увеличении зазора вначале увеличивается, а затем монотонно уменьшается. Это объясняется описанным выше изменением вида деформации деталей. Причем, положение точек перегиба (? = 2…2,5 мм, и t = 100…125 мм) на кривых изменения SК/S0 и kФ не является постоянным, а изменяется при изменении сочетаний значений t, ? и F.
Увеличение усилия F сжатия деталей (рис. 2.4, г) во всех случаях приводит к монотонному увеличению площади контакта детальдеталь, обусловленному увеличением давления в его площади. При этом монотонно уменьшается и искажение формы контакта.
Таким образом, контурная площадь контакта детальдеталь всегда уменьшается при наличии зазора между ними, а искажение её формы зависит от конкретных сочетаний расстояния между точками и расстояния до кромки нахлёстки, а также значений зазора и усилия сжатия деталей. При величинах зазоров, встречающихся в практике КТС, искажение формы контакта однозначно увеличивается с увеличением расстояния между точками и уменьшением расстояния до кромки нахлёстки.
2.1.2. Влияние деформирования деталей на усилие сжатия
в свариваемом контакте
Из силовой схемы двусторонней точечной сварки (см. рис.1.1) следует, что усилие сжатия в контактах электроддеталь и детальдеталь равны усилию сжатия деталей электродами. Однако это всегда справедливо только для контактов электроддеталь. Что же касается усилия сжатия в контакте детальдеталь, то во многих случаях сварки оно отличается от усилия сжатия деталей электродами. И причиной этого являются зазоры, которые приводят к тому, что некоторая часть усилия сжатия электродов (в дальнейшем будем обозначать ее FД) затрачивается на деформирование свариваемых деталей при их сближении до соприкосновения. Вследствие этого усилие в площади свариваемого контакта FC меньше усилия сжатия электродов FЭ на величину FД.
Оценка величины отклонения FC от FЭ важна не только для формирования начальных контактов, а для всего процесса формирования соединений при КТС. Так, устойчивость процесса формирования соединений против образования выплесков при традиционных способах сварки связывают, в частности, с наличием зазоров между свариваемыми деталями. При этом основной причиной образования выплесков при наличии зазоров считают значительное уменьшение усилия сжатия деталей в свариваемом контакте, несмотря на то, что величину зазоров при КТС жестко регламентируют (табл. 2.1) [10, 11, 91, 95].
Очевидно, что такие допуски, в особенности при сборке крупногабаритных изделий, например, при сборке обечаек диаметром в несколько метров с перегородками или набором, выдержать весьма проблематично. Такие ограничения, несомненно, удорожают технологию сборки и сварки. При этом, конкретные результаты исследований, которые бы установили степень влияния FД на отклонение FС от FЭ в процессе КТС и тем самым обосновали бы такое объяснение причин повышенной склонности процесса сварки к образованию выплесков и такие жесткие допуски на величину зазоров, очень немногочисленны.
Таблица 2.1
Допускаемая величина зазоров при КТС
Длина
участка
(мм)Толщина более тонкой детали s, мм0,3 ? s < 11 ? s < 1,51,5 ? s < 2,5s ? 2,5Допускаемая величина зазоров ?, мм1000,50,40,30,22001,00,80,60,43001,51,20,90,6
По-видимому, наименее трудоемким было бы расчетное определение величины FД, например, решением известного уравнения С. Жермен Лагранжа, описывающего прогиб пластинки [96],
, (2.2)
где w величина прогиба пластинки; x и y координаты; q внешняя нагрузка; D цилиндрическая жесткость листа, равная
;
здесь E модуль упругости; s толщина листа; ? коэффициент Пуассона.
Однако точное решение уравнения (2.2) даже для идеализированных граничных условий представляет ?/p>