Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
на качество получаемых сварных соединений. Увеличение площади контакта электроддеталь, например, из-за износа рабочей поверхности электродов приводят к уменьшению плотности тока и давления в зоне сварки, а, следовательно, к уменьшению размеров ядра и снижению качества готовых точечных соединений (рис. 1.9, г).
Применяемая форма электродов зависит от свойств материала свариваемых деталей. Так, например, для сварки титановых, алюминиевых и магниевых сплавов, как правило, применяют электроды со сферическими рабочими поверхностями. Стали же, в основном сваривают электродами с плоской рабочей поверхностью.
Размеры рабочих поверхностей электродов в большинстве случаев выбирают исходя из толщины свариваемых деталей.
Радиус сферы электрода RЭ определяют, ориентируясь на конечный диаметр отпечатка и допустимую глубину вмятины, которая не должна превышать 10 % от толщины детали [83]. Исходя из этого условия предложены следующие зависимости для определения минимального RЭMIN и максимального RЭMAX радиусов рабочих поверхностей электродов в зависимости от толщины s свариваемых деталей [84]:
.
Диаметры плоских рабочих поверхностей электродов выбирают с учетом диаметров ядра, которые в свою очередь задают по толщине деталей. Значения dЭ определяют по следующим зависимостям [85, 86]:
, .
Однако в практике КТС размеры рабочих поверхностей электродов обычно не рассчитывают. Значения dЭ и RЭ, как правило, выбирают по технологическим рекомендациям (табл. 1.2), в которых они близки к значениям, рассчитанным по приведенным выше зависимостям. Окончательные значения tСВ, IСВ, FСВ и RЭ или dЭ определяют и корректируют на образцах технологической пробы [3, 15].
Поскольку приемлемые по точности для практики КТС методики оптимизации режимов сварки (сочетаний IСВ, tСВ и FСВ) пока не разработаны параметры одного из них, как правило, время сварки tСВ, определяют ориентировочно по технологическим рекомендациям, основанным на экспериментальных исследованиях процессов КТС и опыте их практического использования в промышленности. После этого для принятого значения tСВ по приближенным методикам, определяют силу IСВ и усилие сжатия электродов FСВ [2…4, 7…11, 13, 15…17].
Таким образом, существующие расчетные методики определения основных параметров режима весьма не совершенны. У них можно отметить общий недостаток они не отражают физической сущности процессов, протекающих при КТС, не являются универсальными и применимы только для тех ограниченных областей толщин и металлов, на основании результатов исследований которых они и получены. Они не могут использоваться для решения задач, связанных с программированным изменением термодеформационных процессов, протекающих при формировании точечных сварных соединений.
1.3.5. Критерии подобия для определения режимов сварки
Выше, в п. 1.2.1 отмечалось, что, несмотря на изменение значимости влияния на отдельных этапах формирования соединения каждого из основных термодеформационных процессов, протекающих в зоне сварки, на процесс сварки общая схема формирования соединения происходит по единой схеме. При этом исследователями процесса КТС давно было подмечено, что при сварке деталей разных толщин параметры основных термодеформационных процессов изменяются по одинаковым закономерностям, то есть подобно. На основании результатов экспериментальных исследований рядом исследователей были разработаны основы теории подобия процессов КТС и предложен ряд критериев безразмерных величин, математически описывающих это подобие [3, 4, 13, 16, 74…76, 87, 88].
Физические процессы подобны, если они описываются одним и тем же дифференциальным уравнением и имеют подобные начальные и граничные условия. Подобие выражается в том, что при определенных условиях в сходственных точках тел, т. е. в точках с одной и той же относительной координатой, например, в точках, расположенных в середине или на краю листа, достигаются одни и те же значения переменных параметров, в частности температуры или деформации.
По этим критериям, определяемым по моделям, рассчитывают масштабные коэффициенты для определения параметров процесса. Процессы точечной свирки деталей разной толщины могут быть подобны при равенстве критериев подобия, например, следующих [16]:
- критерий геометрического подобия
; (1.12)
- критерий гомохронности (подобия по времени критерий Фурье)
; (1.13)
- критерий подобия тепловыделения
; (1.14)
- критерий подобия пластических деформаций
, (1.15)
где s толщина деталей; dЯ диаметр ядра; IД и tСВ действующее значение сварочного тока и время его протекания; FСВ сварочное усилие; сm, ?, ТПЛ, и ?Д соответственно, массовая теплоёмкость, плотность, температура плавления и сопротивление деформации свариваемого металла.
Применение теории подобия позволяет по одному экспериментально определенному режиму с использованием критериев подобия рассчитать параметры режима сварки деталей других толщин. Значения критериев определяют по единичным опытам [3, 4, 15].
Однако часто расчеты по зависимостям (1.12…1.15) приводят к значительным погрешностям. Обусловлено это прежде всего тем, что в практике сварки не соб?/p>