Основы теории и технологии контактной точечной сварки

Методическое пособие - Разное

Другие методички по предмету Разное

»юдается критерий геометрического подобия
(см. табл. 1.1). Поэтому для приближенной оценки параметров режима в относительно малом диапазоне толщин (1…4 мм) пользуются рядом других, в основном эмпирических, соотношений, аналогичных по структуре указанным выше, например, [15].

Таким образом, различие способов точечной сварки определяется внешним силовым энергетическим и силовым воздействием на зону формирования соединения. Это воздействие влияет на параметры термодеформационных процессов, протекающих в зоне сварки, которые рассмотрены ниже, и определяющих качество получаемых соединений.

 

2. основные Процессы, протекающие при
контактной точечной сварке

 

Сварная точка является результатом сложных термодеформационных процессов, протекающих в зоне формирования соединения в течение цикла сварки. Некоторые из этих процессов протекают последовательно, а некоторые и параллельно. Параметры последних зависят не только от внешнего энергетического и силового воздействия на металла в зоне сварки, но и от сложного их взаимного влияния. Ниже рассмотрены закономерности протекания термодеформационных процессов, оказывающих наиболее значимое влияние на конечный результат сварки.

 

2.1. Сближение свариваемых деталей

 

Технологической операцией, которая первой выполняется в любом цикле КТС, является сближение свариваемых поверхностей до соприкосновения, поскольку собранные для сварки детали практически никогда плотно не прилегают между собой. Обусловлено это тем, что между свариваемыми деталями всегда имеются зазоры. Они являются следствием либо искривления деталей при выполнении технологических операций, которые предшествуют сварке, либо дефектов сборки деталей перед сваркой, или деформаций деталей непосредственно в процессе сварки предшествующих точек [3, 10, 11, 14…16].

В сближении свариваемых деталей до соприкосновения следует выделить два фактора, которые оказывают значимое влияние как на формирование начальных контактов, так и на процесс сварки в целом: геометрический фактор, который проявляется в искривлении деталей при их деформировании в процессе сближения, и силовой фактор, следствием влияния которого является отклонение усилия сжатия в контакте детальдеталь от усилия сжатия электродов [14…16, 89… 91].

 

2.1.1. Деформирование свариваемых деталей при их сближении

Реальная деформация свариваемых деталей в процессе их сближения (рис. 2.1) представляет сложное сочетание признаков, близких как к чистому изгибу пластины (рис. 2.1, а), так и к чистому ее прогибу по типу мембраны (рис. 2.1, д). При этом переход от первого ее состояния ко второму происходит плавно (рис. 2.1, б...г) по мере увеличения расстояния u от кромки нахлестки до центра электродов. Причем этот переход происходит тем быстрее (при меньшей величине u), чем меньше расстояние tШ до точек опоры вдоль нахлестки.

Наличие зазоров между деталями и операции их сближения до соприкосновения, которое приводит к сложному искривлению деталей, существенно изменяет как распределение напряжений в контактах, так и характер, протекающих в них микро- и макродеформаций. При отсутствии зазора (рис. 1.5, этап 1) можно допустить, что в контакте деталь-деталь деформируются две плоские поверхности, а при большом расстоянии от кромки листов до электродов (рис. 2.1, д) две сферические поверхности. В практике же сварки в основном встречаются промежуточные более сложные, несимметричные виды деформирования свариваемых деталей при их сближении (рис. 2.1, б...в) [91].

 

Сложное искривление деталей при их сближении приводит как к уменьшению размеров ядра, так и к искажению его формы (рис. 2.2). Основной причиной этого является изменение формы контакта (рис. 2.3).

Исследования влияния величины зазора ?, шага между точками t=2 tШ, расстояния от кромки нахлестки u и FСВ на величину и форму начального контакта выявили сложную их зависимость от перечисленных выше факторов. При этом измерение контурной площади контакта производили по известной методике угольных плёнок [92…94].

 

Форма контакта оценивалась коэффициентом формы kФ, который характеризует отклонение формы контакта от окружности, т. е. эллипсоидность контакта. В этом случае реальный контакт принимается в форме эллипса, в котором взаимно перпендикулярные наибольшее и наименьшие значения диаметров контакта принимаются равными наибольшей и наименьшей 2b оси эллипса (рис. 2.3). Эти оси сравниваются с диаметром d0 условной окружности, площадь которой равна площади эллипса. В этом случае коэффициент формы контакта определяется по зависимости

. (2.1)

 

 

Очевидно, что коэффициент формы контакта показывает относительное отклонение формы контакта от окружности. Во всех случаях прогиба деталей при наличии зазора между ними контакт вытягивается вдоль оси, перпендикулярной линии края нахлестки (рис. 2.4).

Увеличение расстояния от края листа u при постоянстве остальных параметров приводит к уменьшению контурной площади сварочного контакта SК относительно ее величины при отсутствии зазора S0 (SК/S0) и уменьшению коэффициента её формы kФ, т. е. его эллипсоидности
(рис. 2.4, а). Это объясняется плавным переходом вида деформации детали

от изгиба к прогибу по типу мембраны.

Увеличение расстояния между точками t<