Основы построения систем распознавания образов

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

ителя амплитуды . При этом

где (k) - нормальный случайный процесс с нулевым математическим ожиданием и дисперсией Dx. При этом дисперсия является паспортной характеристикой применяемого измерителя частоты тона звукового сигнала.

Случайная аддитивная составляющая сигнала, входящая в это выражение и обусловливает ошибки определения номеров тактов достижения максимумов сигналом, а значит и ошибку определения частоты. Определить величину, вернее параметры, этой ошибки можно, проведя теоретический вывод зависимости

пользуясь рассмотренной связью между частотой и максимумами сигнала. Этого же можно достичь и численно, пользуясь методом статистических испытаний (Монте-Карло). Для реализации его придется очевидно генерацию нормальной случайной последовательности (k) с Mx = 0 и дисперсией Dx. Добавляя соответствующее значение последовательности к периодической части сигнала и определяя по приведенному алгоритму значения fi, после набора достаточного статистического материала (q реализаций) получим

;

Точно так может быть определена и плотность распределения вероятностей интересующих нас ошибок измерений.

Заметим, что с точки зрения построения всей модели измерителя получение параметров ошибок измерения частоты (Mf, f 2 ) или плотности распределения вероятностей в рамках модели самого измерителя не является необходимым. Рассмотренную операцию можно провести отдельно. Выполняется это, как мы упомянули и показали, либо аналитически, либо с использованием метода Монте-Карло. Причем компьютерные реализации и того и другого подходов представляют собой частные модели ошибок. А результаты их работы дают возможность включить в модель измерителя частоты упрощенный субблок ошибок. Последний будет представлять собой всего лишь датчик случайных чисел , построенный на основе реализации плотности распределения вероятностей ошибок определения частоты или нормальной аппроксимации плотности с числовыми характеристиками, определенными на упомянутых частных моделях .

В качестве второго примера, помогающего нам выяснить принципы построения модели распознавания, рассмотрим измеритель радиального размера такого объекта как вращающийся вокруг своего центра тяжести прямоугольник.

Для простоты и наглядности будем считать, что точка, из которой ведутся наблюдения этого прямоугольника и измеряется его текущий радиальный размер лежит в начале координат (0,0). При этом радиальным размером объекта считается величина

где Ri max(kt), Ri min(kt) - расстояния до наиболее удаленной и ближайшей к точке стояния измерителя точек контура прямоугольника (пересечения с радиус-вектором наблюдения).

Из простых алгебраических соображений, решая уравнения по определению точек пересечения прямых, отрезки которых образуют стороны прямоугольника, с прямой радиус-вектора из начала координат, для каждого положения прямоугольника будем иметь соответствующие значения. А как изменяются во времени координаты точек контура прямоугольника в модели объекта, а значит и уравнения отрезков сторон его, мы уже рассмотрели. Понятно, что изложенные принципы позволяют записать строго все математические выражения, составляющие существо такого измерителя и легко программно реализовать при построении модели.

По аналогии с предыдущим примером можно считать, что паспортной характеристикой измерителя радиального размера должна быть либо плотность распределения вероятностей ошибок определения ri или числовые характеристики нормального закона, имеющего место как правило при измерениях. И так же, как и в предыдущем примере, модель измерителя радиального размера должна включать модуль датчика случайных чисел, генерирующего аддитивную добавку к ri - ri в соответствии с указанными данными. То есть, измеренное в каждом такте работы программы модели значение радиального размера должно иметь случайную добавку

Следует еще раз подчеркнуть, что плотность распределения этой добавки, как случайной величины, должна соответствовать заданной в паспорте для данного измерителя или полученной для него экспериментально в процессе его испытаний.

Таким образом, уже два рассмотренных примера однозначно демонстрируют, что составными частями модели измерителей характеристик объектов распознавания должны быть:

-модули каждого из средств, отличающихся по физическим принципам, алгоритмы измерений которых имеют свое специфическое математическое описание;

-модули датчиков случайных чисел, реализующие случайные добавки к измерениям каждого средства в соответствии с заданными плотностями распределения вероятностей ошибок.

 

В то же время эти примеры, позволившие сформировать первые представления о модели средств измерений, не достаточно подчеркнули факт того, что измерители чаще всего определяют интересующие характеристики объекта на некотором временном интервале наблюдения, то есть по совокупности сигналов, а не в точке.

Уже в первом примере измерителя частот гармонических сигналов нельзя было обойтись без накопления информации: частота определялась по результатам наблюдения нескольких периодов сигнала X(t).

Точно также во втором примере (вращающийся прямоугольник) скорее всего для решения распознавательных задач мгновенными замерами радиальных размеров ограничиться нельзя. Требования классификации могут заставить нас здесь либо опять-таки измерять период в?/p>