Основы построения систем распознавания образов

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

?и. Это и ошибки измерений, носящие случайный характер. Это и точности изготовления деталей и т.д. и т.п.

Отсюда следует, что при соответствующих заменах блоков каждый эксперимент на системной модели должен носить случайный характер.

5.2.2. Моделирование сложных систем и опытно-теоретический метод их испытаний

Рассмотрение истории вопроса появления и развития моделирования показало, что цель создания любой модели - испытания некоторой системы. При этом сегодня речь идет о компьютерной реализации и испытаниях модели системы в условиях, которые или невозможно, или достаточно дорого создать для проведения натурных испытаний реальной системы, или это сопряжено с большими временными затратами.

В то же время из проведенного рассмотрения отличий модели от представляемого ею объекта (процесса, явления) следует, что полностью положиться на результаты моделирования, выступающего в качестве единственного источника получения характеристик указанного объекта (процесса, явления) не представляется возможным.

Отсюда логически вытекает необходимость сочетания моделирования и натурных испытаний для совместного получения показателей соответствующей системы. Соответствующий метод и получил название опытно-теоретического.

Здесь необходимо заметить: когда речь идет о натурных испытаниях системы, подразумевают натурные испытания ее элементов или сокращенного, упрощенного варианта. В противном случае пришлось бы создать систему в целом, не зная заранее, как она будет выполнять те или иные задачи. А если при этом система окажется неспособной выполнить свое назначение и затраты нецелесообразными? Но система создана?! В связи с этим и цель опытно-теоретического метода - избежать нецелесообразных затрат, используя сочетание экспериментальных данных в ограниченном объеме и моделирования - во всей области факторного пространства функционирования системы.

Суть опытно-теоретического метода, обязательно предполагающего создание модели системы, сводится к выполнению следующих положений:

1)Получение для одних и тех же условий достаточного количества реализаций показателей функционирования системы или ее отдельных блоков в натурных испытаниях и на модели.

2)Проведение параметрической доработки модели на основе сравнения результатов натурных экспериментов и моделирования, если структура модели удовлетворительна.

3)Проведение структурной перестройки модели, дополнительный учет отдельных факторов, дополнение связей при наличии остаточной разности между выходными характеристиками после попытки параметрической доработки.

4)Проверка статистической совместимости модели и системы в ряде целенаправленно выбранных точек факторного пространства.

5)На основе выполненной калибровки модели (пункты 1-4) распространение результатов испытаний системы с помощью моделирования на всю область факторного пространства.

 

Таким образом достигается сначала изоморфность модели и системы, а затем оценка этой системы на модели во всех возможных условиях функционирования.

Упомянутый при этом отказ от создания системы в целом, замена ее испытаний на испытания отдельных узлов, модулей, составляющих и т.п. отражается на построении модели системы. Дело в том, что некоторые результаты испытаний могут позволить, например, отдельные составляющие системы не моделировать, описывая соответствующие физические процессы, не искать для них точных математических описаний для реализации, а воспользоваться полученными экспериментальными данными. Так, можно не моделировать уходы параметров отдельных электронных и электромеханических устройств, приводящие к их отказам, если в результате испытаний получены характеристики надежности этих устройств (вероятность безотказной работы в течение рабочего цикла, наработка на отказ, время безотказной работы). То есть, натурные испытания могут явиться основанием для упрощения модели при сохранении ее изоморфности системе.

Рассмотренный путь упрощения - не единственный. Во-первых, уже упомянутый нами компромиссный характер создания модели системы (между точностью и возможностью реализации) дает в отдельных случаях такие основания. Тогда, как уже упоминалось можно отказаться от некоторых деталей моделирования. Во-вторых, задачи, ставящиеся перед моделью могут быть различными: оценка функционирования системы, оценка взаимодействия системы с другими сложными системами, оценка характеристик системы во всем диапазоне условий функционирования и т.д. Это приводит к тому, что при испытаниях сложных систем имеют дело не с одной единственной моделью. Так по своему назначению модели делятся на частные и системные.

Частные модели - это модели отдельных частей системы (подсистем, узлов, агрегатов), позволяющие при высокой точности моделирования этих частей получить исходные данные для использования в системной модели. В результате системная модель не будет перегружена соответствующими частными задачами, то есть, упростится и сможет стать реализуемой в приемлемое время (например, в реальное время), с приемлемым быстродействием и в допустимом объеме.

Системные модели включают в свой состав элементы, отражающие в той или иной степени работу всех частей системы или напрямую используют отдельные части системы. Они позволяют получить показатели качества всей системы в целом. А так как таких показателей может быть несколько, то и системных модел?/p>