Основы построения систем распознавания образов

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

?о, допуская, что

- для каждого k-го признака распознавания существует некоторая вероятность такого события Ak, когда решение о принадлежности объектов к Wi классу принимается однозначно.

-признаки распознавания независимы между собой.

Независимость признаков означает и независимость событий Ak (событий принятия однозначных решений о принадлежности).

Обратимся к теории вероятностей. Вероятность наступления двух совместных или несовместных событий A1 и A2

 

P (A1 + A2 ) = P (A1 ) + P (A2 ) - P (A1 A2 )

 

Отсюда для трех событий получим

 

P (A1 + A2 + A3 ) = P [A1+ (A2 + A3 )] = P (A1 ) + P (A2 + A3 ) - P [A1 (A2 + A3 )] = P (A1 ) + P (A2 ) + P (A3 ) - P (A2A3 ) - P (A1A2 + A1A3 ) =

=P (A1 ) + P (A2 ) + P (A3 ) - P (A2 A3 ) -[ P(A1A2 ) + P (A1A3 ) - P (A1A2A3 )]

 

или

 

 

Точно также для четырех событий

 

Теперь образуем разность между вероятностями суммы 4-х и 3-х событий, состоящих в рассматриваемом нами случае в принятии однозначного решения о принадлежности по 4-м и 3-м признакам распознавания соответственно:

=

 

(Наиболее просто эту разность получить, не доводя уменьшаемое до конечного вида

Теперь по индукции можно записать:

 

Из приведенного выражения следует, что если не достигнута предельная вероятность правильного распознавания, то есть:

 

 

то при любом имеем

 

 

Это является доказательством возрастания вероятности при увеличении числа признаков.

Таким образом, последовательность

 

 

при является монотонно возрастающей, а значит и сходящейся, так как предел возрастания - “1”.

 

Для сходящейся последовательности

а значит

что и требовалось доказать.

 

Следствие:

Снижение эффективности распознавания за счет увеличения числа классов может быть скомпенсировано увеличением размерности вектора признаков.

Заметим, что мы вели доказательство для независимых признаков. В случае зависимых признаков (коррелированных) надежда на повышение эффективности основывается на наличии связей, приводящих к лучшей разделимости классов (Это можно показать на примере двумерного пространства признаков, которому соответствуют неперекрывающиеся эллипсы рассеяния).

 

4.2.2. Формализация задачи оптимального взаимосвязанного выбора алфавита классов и словаря признаков

 

Решая задачу повышения эффективности СР за счет увеличения размерности вектора признаков, мы не обращали внимания на то, что указанное увеличение - это часто возрастание числа технических средств измерений, каждое из которых обеспечивает определение одного или группы признаков. Значит при этом растут расходы на построение СР. А ресурсы часто ограничены.

Поэтому в условиях ограниченных ресурсов на создание СР только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков обеспечивает решение задачи оптимальным образом. Для обеспечения этого компромисса требуется предварительная формализация задачи. Начнем с общей формулировки задачи.

 

 

4.2.2.1. Формализация исходных данных

 

Пусть задано множество объектов или явлений

 

W ={w1 , w2 ,....,wl };

 

(например, W=самолеты, а w1 -пассажирский самолет Ту-154 , w2 - военно-транспортный самолет АН-12, w3 - истребитель МИГ-29 и т.д.).

Введем множество из r возможных вариантов разбиения этих объектов W на классы (варианты алфавита классов)

 

A ={A1, A2, ..., Ar}

 

(например, A1 - 2 класса - пассажирские, военные (m1 =2); A2 -5 классов - истребители, бомбардировщики, штурмовики, пассажирские, военно- транспортные (m2 =5) )

 

Таким образом, с учетом возможного отказа от решений в каждом варианте множество объектов W подразделяется на свое число классов:

в варианте A1 - на (m1 +1) классов;

в варианте A2 - на (m2 +1) классов;

...........................................................

 

в варианте Ar - на (mr +1) классов.

 

Иными словами здесь мы располагаем r алфавитами классов.

В соответствии с вариантом алфавита классов (As) исходные объекты (явления) разбиваются на ms "решающих" классов

 

W = {W(1/As ), W(2/As ), W(3/As ),....... , W(ms /As )},

 

где естественно "1", "2",..... - номера классов; As - вариант алфавита классов, где s=1,2,....,r.

Например:

 

W(1/As ) = {W1 ,W2 ,..Wk }; W(2/As ) = { Wk+1 ,Wk+2 ,..,Wl }

 

и т.д.

Таким образом, мы располагаем подмножествами классифицированных объектов.

Если при этом располагаем априорным словарем признаков

_

X = { x1 , x2 , ..., xn },

и притом размеры указанных подмножеств классифицированных объектов таковы, что соответствующие выборки признаков представительны (в каждом классе достаточное в статистическом смысле число объектов),то тогда тем или иным способом может быть проведено описание каждого из классов на языке этого словаря.

В детерминированном случае это достаточно просто. Каждый класс имеет свои эталоны со своими характеристиками как наборами параметров, представляющих собой признаки распознавания:

 

Xik [W(j/As )],

__

где i = 1,n - число признаков распознавания;

__

j = 1,m - число классов;

___

k = 1,Nэj - число эталонов в j-том классе.

 

При статистическом подходе (вероятностные признаки и вероятностная СР) описание это:

 

- априорные вероятности классов P[W(