Основы построения систем распознавания образов
Методическое пособие - Компьютеры, программирование
Другие методички по предмету Компьютеры, программирование
ной выборке реализаций измеренных значений (при моделировании объектов и измерителей).
2)Исключение из описаний одномерных плотностей распределения при сокращении размерности вектора признаков.
3)Перекомпоновка плотностей описания классов и априорных вероятностей при сокращении числа классов.
4)Перенумерации классов после объединения отдельных.
Учитывая тот факт, что при имеющихся ограничениях на создание средств измерений и (или) средств обработки приходится варьировать наборами признаков, рассмотренный модуль описания классов должен повторять функции 2-го пункта при каждом новом наборе.
Наличие рассмотренного модуля в составе модели СР предъявляет определенные требования к его окружению. Во-первых, для каждого нового описания классов необходимо в качестве входной информации модуля иметь используемый в данной серии испытаний вектор отбора признаков. При решении задачи объединения классов в качестве входной информации модуля необходимо иметь решение в виде номеров классов, назначенных к объединению. В соответствии с этим модуль обеспечивает:
-повторное описание классов при каждом новом векторе отбора;
-описание объединенных классов после испытаний системы распознавания для одного состава алфавита (перекомпоновка векторов-признаков при их независимости).
Если первая из приведенных задач решается автоматически исключением признаков, то вторая не может быть решена без оценки эффективности СР в данной серии испытаний. То есть, решается после проведения испытаний с данным вариантом алфавита во всем диапазоне допустимых векторов отбора признаков распознавания.
5.7.2. Модуль оценки эффективности системы распознавания
Оценка эффективности СР, как это следует из самого понятия “эффективность”, представляется необходимым элементом модели СР в целом, позволяющим ответить на вопрос, каково качество или созданной системы или системы после ее очередных доработок (изменений алфавита классов и словаря признаков распознавания), осуществляемых в процессе оптимизации.
В том случае, когда решение системы зависит от многих факторов, имеющих случайный характер, показателями, характеризующими оптимальность, являются вероятности правильных и ошибочных решений. Отсюда целесообразным для конструкции модели оценки эффективности должен быть субмодуль оценки вероятностей решений системы.
К основным данным для формализации такого субмодуля относятся исходы модельных испытаний. Они представляют собой решения о принадлежности при известной принадлежности классифицируемого объекта в каждом испытании.
Поэтому работа алгоритма субмодуля в рассматриваемой части заключается в фиксации решений и истиной принадлежности объекта в некоторой матрице решений:
где nij/Vk - число отнесений объекта j-го класса (известного при организации моделирования) к классу i.
Число таких матриц после испытаний СР для каждого вектора отбора Vk равно числу таких векторов, удовлетворяющих ограничениям средств на создание или использование систем измерений признаков распознавания. Если же имеем дело с оценкой конкретной структуры системы распознавания, то естественно будем иметь всего одну матрицу для заданного конкретного набора признаков распознавания.
В любом случае эти матрицы легко преобразуются в матрицы вероятностей соответствующих решений (точнее, частот, сходящихся к вероятности с заданной точностью при специально выбранном количестве модельных испытаний).Тогда для алфавита классов Ar имеем:
Эта простота конечной оценки показателей функционирования системы как раз и является характерной особенностью метода статистических испытаний (метода Монте-Карло).
Отсюда может быть получена вероятность правильных системных решений в целом (то есть, отнесений ко всем классам алфавита):
На этом при оценке эффективности СР с конкретной детерминированной структурой моделирование завершается и рассмотренным субмодулем ограничивается структура модуля оценки эффективности.
Если же существует необходимость оптимизации, то возникает необходимость дополнения модели оценки эффективности субмодулем выбора оптимального набора признаков распознавания.. Его алгоритм очевиден:
_
То есть, g-ый вектор отбора (Vg) обеспечивает максимальную вероятность правильных системных решений в алфавите Ar.
Теперь матрица вероятностей соответсвует любым системным решениям для найденного оптимального набора признаков распознавания. В результате появляется возможность определить в данном алфавите класс , объекты которого классифицируются в максимальной степени ошибочно.
Соответствующую вероятность находим как максимальную вероятность ошибки:
откуда номер упомянутого класса:
Если теперь задаться порогом вероятности P()зад, то появляется возможность при P(/r) > P()зад принять решение о необходимости исключения из алфавита Ar класса с номером , эффективность отнесения к которому ниже требуемой (заданной).
Отсюда все операции, связанные с определение такого класса (номера его через вероятность ошибочного отнесения), могут быть объединены в отдельном субмодулем- поиска класса, снижающего эффективность распознавания.
Наконец, та же матрица
позволяет выделить такой класс, отнесение к которому объектов найденного низкоэффе