Дипломная работа по предмету Физика

  • 21. Асинхронный электродвигатель серии 4А
    Дипломы Физика
  • 22. Атомная электроэнергетика России: современное состояние, проблемы и перспективы развития
    Дипломы Физика

    Россия располагает значительными запасами энергетических ресурсов и мощным топливно-энергетическим комплексом, который является базой развития экономики, инструментом проведения внутренней и внешней политики. Роль страны на мировых энергетических рынках во многом определяет её геополитическое влияние. Энергетический сектор обеспечивает жизнедеятельность всех отраслей национального хозяйства, способствует консолидации субъектов Российской Федерации, во многом определяет формирование основных финансово-экономических показателей страны. Природные топливно-энергетические ресурсы, производственный, научно-технический и кадровый потенциал энергетического сектора экономики являются национальным достоянием России. Эффективное его использование создает необходимые предпосылки для вывода экономики страны на путь устойчивого развития, обеспечивающего рост благосостояния и повышение уровня жизни населения. Начавшийся экономический рост неизбежно повлечет за собой существенное увеличение спроса на энергетические ресурсы внутри страны, что требует решения унаследованных и накопившихся за годы реформ экономических проблем в условиях глобализации и ужесточения общемировой конкуренции, обострения борьбы за энергетические ресурсы, рынки и др. Соответствовать требованиям нового времени может только качественно новый топливно-энергетический комплекс (ТЭК) - финансово устойчивый, экономически эффективный и динамично развивающийся, соответствующий экологическим стандартам, оснащенный передовыми технологиями и высококвалифицированными кадрами. Для долгосрочного стабильного обеспечения экономики и населения страны всеми видами энергии необходима научно обоснованная и воспринятая обществом и институтами государственной власти долгосрочная энергетическая политика [15, 18].

  • 23. Биологическая защита реактора
    Дипломы Физика

    Теплоизоляция цилиндрической части корпуса реактора предназначена для уменьшения тепловых потерь корпуса реактора, для защиты оборудования и стенок бетонной шахты от воздействия высоких температур со стороны реактора в нормальных и аварийных условиях.

    • Теплоизоляция цилиндрической части корпуса реактора состоит из двух цилиндрических поясов, пола и изоляции коридора, выполненных из отдельных секторов и коробов, заполненных пакетами листов из ленты толщиной 0,3 мм с дистанционирующими выступами. Дистанционирующие выступы предназначены для обеспечения воздушного зазора между листами. Пакеты облицованы нержавеющей сталью. Секторы верхнего пояса цилиндрической части крепятся к сухой защите при помощи полок и дистанционируются относительно сухой защиты при помощи шайб и шпилек. Секции нижнего цилиндрического пояса устанавливаются на закладные детали пола подреакторного помещения и дистанционируются относительно стенок шахты при помощи шайб и шпилек.
    • Короба пола теплоизоляции устанавливаются на закладные детали пола подреакторного помещения и крепятся при помощи шпилек. Для дренажа жидкости с пола тепловой изоляции при проведении контроля корпуса в тепловой изоляции выполнена проходка.
    • Между теплоизоляцией и корпусом реактора предусмотрен зазор в 400 мм для выполнения работ по наружному осмотру и ультразвуковому контроля корпуса реактора специальной машиной (передвижной манипулятор подсистемы наружного контроля корпуса и днища реактора).
    • Подреакторное помещение для ввода передвижного манипулятора подсистемы наружного контроля корпуса и днища реактора имеет специальную герметичную дверь и рельсовый путь.
    • Дверь защитная состоит из двух створок, закреплённых на раме герметичной в подреакторном помещении и закрытых во время работы реакторной установки на мощности. Створки заполнены серпентинитовым бетоном. Общая масса двери - 6000 кг.
    • Дверь защитная снижает уровень излучения от реактора и защищает обслуживающий персонал во время установки съёмных участков рельс и подготовки манипулятора передвижного для проведения контроля корпуса реактора.
    • Тепловая изоляция относится к оборудованию II категории сейсмостойкости.
  • 24. Взаимодействие электромагнитного поля с электронами
    Дипломы Физика

    За последние два десятилетия в физике низкоразмерных квантовых структур был сделан ряд крупных открытий. Достаточно назвать главные из них. Предсказаны и детально исследованы эффекты слабой и сильной локализации квантовых состояний в присутствии случайного потенциала. В баллистических проводниках, где рассеяние на примесях и дефектах играет малозаметную роль, обнаружено квантование проводимости. Исследованы универсальные флуктуации проводимости в проводниках, размеры которых не превышают длины сбоя фазы волновой функции. Наблюдалась кулоновская блокада туннелирования в полупроводниковых наноструктурах. Можно уверенно сказать, что открытие целочисленного и дробного квантовых эффектов Холла в двумерном электронном газе качественно изменило наши представления как о характере магнетотранспорта в конденсированных средах, так и о природе основного и возбуждённых состояний двумерной кулоновской жидкости. Несмотря на то, что все перечисленные явления наблюдаются в образцах, размеры которых существенно превышают атомные, они имеют чисто квантовую природу и не могут быть поняты в рамках классических представлений. В то же время эти размеры меньше, чем у обычных макроскопических тел, окружающих нас. Поэтому можно говорить о некоторой промежуточной области линейных масштабах, в которой уже действуют законы квантовой механики.

  • 25. Вибір структурної і принципової електричної схеми
    Дипломы Физика

     

    1. СН 245-71. Санітарні норми проектування промислових підприємств.
    2. ДЕРЖСТАНДАРТ 12.1.038-82. ССБТ. Гранично припустимі рівні напруг доторкань і струмів.
    3. ДЕРЖСТАНДАРТ 12.1.019-79. ССБТ. Електробезпечність. Загальні вимоги.
    4. ДЕРЖСТАНДАРТ 12.1.030-81. ССБТ. Захисне заземлення. Звіроферма.
    5. ОНТП 24-86. Загальносоюзні норми технологічного проектування. Визначення категорій приміщень і будинків по пожежної небезпеки.
    6. ДЕРЖСТАНДАРТ 12.4.009-85. ССБТ. Пожежна техніка для захисту об'єктів. Загальні вимоги.
    7. ДЕРЖСТАНДАРТ 12.1.033-81. ССБТ. Пожежна безпека об'єктів з електричними мережами.
    8. Снип II-4.79. Будівельні норми й правила. Норми проектування. Природне й штучне висвітлення.
    9. ДЕРЖСТАНДАРТ 12.2.032-78 ССБТ. Робоче місце при виконанні робіт сидячи. Загальні ергономічні вимоги.
    10. ДЕРЖСТАНДАРТ 22.269-76. Система “людина-машина”. Робоче місце оператора. Тимчасове розташування елементів робочого місця. Загальні ергономічні вимоги.
    11. ДЕРЖСТАНДАРТ 27.818-88. Машини обчислювальні й системи обробки даних. Припустимі рівні шуму на робочих місцях і методи його визначення.
    12. ДЕРЖСТАНДАРТ 12.1.005-88 ССБТ. Повітря робочої зони. Загальні санітарно-гігієнічні вимоги.
    13. ДЕРЖСТАНДАРТ 12.4.113-82 ССБТ. Роботи навчальні лабораторні. Загальні вимоги безпеки.
    14. Санпин 2.2.2.542-96. Гігієнічні вимоги до відео дисплейних терміналів, персональним електронно-обчислювальним машинам і організація роботи.
    15. ДЕРЖСТАНДАРТ 12.0.003-74. ССБТ. Небезпечні й шкідливі виробничі фактори.
    16. СН 952-75. Санітарні правила організації процесу пайки дрібних деталей сплавами, що містять свинець.
    17. ДЕРЖСТАНДАРТ 18298-79. Стійкість апаратури, що комплектують елементів і матеріалів радіаційна. Терміни й визначення.
    18. Мирова Л.О., Чипиженко А.З. Забезпечення радіаційної стійкості апаратури зв'язку. К., 2005
    19. Вавилов В.С., Ухин Н.А. Радіаційні ефекти в напівпровідниках і напівпровідникових приладах. К., 2005
  • 26. Виды электростанций
    Дипломы Физика
  • 27. Вимикачі навантаження
    Дипломы Физика

     

    1. Арменский Е.В., Прокофьев П.А., Фалк Г.Б. Автоматизированный электропривод: Учеб. пособие для сред. ПТУ М.: Высш. шк., 1987.
    2. Атабеков В.Б. Монтаж електричних мереж і силового електроустаткування: Підруч. Пер. з рос. Т.А. Сиротинко. Вища шк.; 1995.
    3. Бондар В.М., Гаврилюк В.А., Духовний А.X. та ін. Практична електротехніка для робітничих професій: Підруч. для учнів проф.-навч. закладів з різноманіт. галузей пром-сті та побут, обслуг. К,: Веселка, 1997. 191 с.
    4. Бондар В.М., Шаповаленко О.Г. Монтаж освітлювальних, силових мереж і електроустаткування: В запитаннях і відповідях: Навч. посібник. К.: Вища шк., 1995.
    5. Вернер В.В. Электромонтер-ремонтник: Учеб. для профессион. обучения рабочих на производстве. 7-е изд., перераб. и доп. М.: Высш. шк., 1987.
    6. Голыгин А.Ф., Ильяшенко Л.А. Устройство и обслуживание электрооборудования промышленных предприятий: Учеб. пособие для сред. ПТУ. М.: Высш. шк., 1986.
    7. Гуревич Б.М., Иваненко Н.С. Справочник по электронике для молодого рабочего: 4-е изд., перераб. и доп. М.: Высш. шк., 1987.
    8. Иванов А.А. Справочник по электротехнике. 5-е изд., перераб. и доп. К.: Вища шк. Головное изд-во, 1984.
    9. Корнилов Ю.В., Бредихин А.Н. Слесарь-электромонтажник: Учеб. пособ. для СПТУ. 2-е изд., перераб. и доп. М.: Высш. шк., 1988. 256 с.: ил.
    10. Общая электротехника с основами электроники: Учебник для техникумов. В.А. Гаврилюк, Б.С. Гершунский, А.В. Ковальчук, Ю.А. Куницкий. А.Г. Шаповаленко. К.: Вища шк., 1980.
    11. Охрана труда в электроустановках: Учебник для вузов. Под ред. Б.А. Князевского. 3-е изд., перераб. и доп. М.: Энергоатомиздат, 1983.
    12. Поляков В.А. Электротехника: Учеб. пособие для учащих ся 9 и 10 кл. сред. шк. К.: Рад. школа, 1983. 216 с.
    13. Принц М.В., Цимбалістий В.М. Освітлювальне і силове електроустаткування. Монтаж і обслуговування. Львів: Оріяна-Нова, 2005.
    14. Руденко В.С., Сенько В.И. Трифонюк В.В. Основы промышленной электроники. К.: Вища шк. Головне вид-во, 1985.
    15. Харизоменов И.В., Харизоменов Г.И. Электрооборудование станков и автоматических линий: Учебник для техникумов. 2-е изд., перераб. и доп. М.: Машиностроение, 1987.
    16. Электромонтажные работы. В 11 кн. Кн. 3. Кабельные сети: Учеб. пособие для ПТУ. А.А. Коптев. Под ред. А.Н. Трифонова. М.: Высш. шк., 1990.
    17. Электротехника: Учебник для вузов. Ю.М. Борисов, Д.Н. Лопатов, Ю.Н. Зорин. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1985.
    18. Электротехника: Учебник для ПТУ. А.Я. Шихин, Н.М. Белоусова, Ю.X. Пухляков и др. Под ред. А.Я. Шихина. М.: Высш. шк., 1991.
    19. Электротехнический справочник. Т. І, «Энергия», 1971.
  • 28. Влияние конструктивных особенностей тяговой сети на потери энергии
    Дипломы Физика

     ïîñëåäíåå âðåìÿ â âèäó îãðàíè÷åííîñòè ýíåðãîíîñèòåëåé âñ¸ áîëåå îñòðî âîçíèêàþò ïðîáëåìû ðàöèîíàëüíîãî è ýêîíîìè÷åñêîãî ðàñõîäîâàíèÿ ýíåðãèè, â òîì ÷èñëå è ýëåêòðè÷åñêîé. Îñíîâíûì ïîòðåáèòåëåì ýëåêòðè÷åñêîé ýíåðãèè íà æåëåçíîäîðîæíîì òðàíñïîðòå ÿâëÿåòñÿ ýëåêòðè÷åñêàÿ òÿãà. Ïî ñâîåé ïðèðîäå òÿãîâàÿ íàãðóçêà îòëè÷àåòñÿ îò íåòÿãîâîé òåì, ÷òî îäíîâðåìåííî ïåðåìåùàåòñÿ â ïðîñòðàíñòâå è èçìåíÿåòñÿ âî âðåìåíè. Îñîáóþ àêòóàëüíîñòü ïîëó÷èëà çàäà÷à îïðåäåëåíèÿ è ïðîãíîçèðîâàíèÿ ïîòåðü â òÿãîâîé ñåòè. Âîçìîæíîñòü ïðîãíîçèðîâàíèÿ ïîòåðü, à âìåñòå ñ íèìè è ýíåðãèè, íåîáõîäèìà äëÿ ðàçâèòèÿ îïòîâîãî ðûíêà ýëåêòðîýíåðãèè ïóòåì âûõîäà íà íåãî òÿãîâûõ ïîòðåáèòåëåé. Ïðè òåõíèêî-ýêîíîìè÷åñêèõ ðàñ÷¸òàõ ýëåêòðîïîòðåáëåíèÿ èñïîëüçóþòñÿ èçìåðåííûå è ðàññ÷èòàííûå ïðèáëèæåííî âåëè÷èíû.  ýòèõ ðàñ÷åòàõ ïðîöåíò ïîòåðü â òÿãîâîé ñåòè ïðèíèìàåòñÿ (!) îðèåíòèðîâî÷íî, òàê êàê ïðè ñóùåñòâóþùåé ñèñòåìå ó÷¸òà òî÷íîå çíà÷åíèå ïîòåðü ýíåðãèè îïðåäåëèòü íåâîçìîæíî. Ýòî äà¸ò âîçìîæíîñòü âàðüèðîâàòü âåëè÷èíàìè ïîòðåáëåíèÿ ýëåêòðîýíåðãèè íà òÿãó, òåì ñàìûì ïîêðûâàÿ íåóâÿçêè ïðè ñîñòàâëåíèè îáùåãî ýíåðãåòè÷åñêîãî áàëàíñà.  ðåçóëüòàòå íà òàê íàçûâàåìûå "óñëîâíûå ïîòåðè" ñïèñûâàþòñÿ îðãàíèçàöèîííî-ýêîíîìè÷åñêèå íåäî÷¸òû è íåäîðàáîòêè ðàçëè÷íûõ ñëóæá è ñòðóêòóðíûõ ïîäðàçäåëåíèé æåëåçíûõ äîðîã.  ýòèõ óñëîâèÿõ íà ðÿäå äîðîã ïîòåðè â òÿãîâîé ñåòè ïåðåìåííîãî òîêà îöåíèâàþò âåëè÷èíîé 10-15%, â òî âðåìÿ, êàê äåéñòâèòåëüíûå ïîòåðè ñîñòàâëÿþò 3-5%. Äëÿ ðàçðåøåíèÿ ïåðå÷èñëåííûõ ïðîáëåì ïðåäëàãàåòñÿ ïðè îïðåäåëåíèè è ïðîãíîçèðîâàíèè ïîòåðü èñïîëüçîâàòü ñïåöèàëüíóþ ïðîãðàììó, êîòîðàÿ ïîçâîëÿåò ïðîâîäèòü ìîäåëèðîâàíèå òÿãîâîé íàãðóçêè. Ñëåäóåò îòìåòèòü, ÷òî ïðèìåíåíèå ñòàíäàðòíûõ ìîäåëåé, òàêèõ êàê Electronics Workbench, íå ïîçâîëÿåò ïîëó÷èòü òðåáóåìûé ðåçóëüòàò, ïîñêîëüêó íå ðåàëèçóåòñÿ ïðîöåññ ïåðåìåùåíèÿ íàãðóçêè, à ïðè ìîäåëèðîâàíèè äâèæåíèÿ ïîåçäà ïî ó÷àñòêó ïðèõîäèòñÿ ìîäåëèðîâàòü êàæäóþ ìãíîâåííóþ ñõåìó â îòäåëüíîñòè.

  • 29. Влияние температуры и магнитного поля на электрическую проводимость и аккумуляцию энергии в кондукто...
    Дипломы Физика

    ЛИТЕРАТУРА

    1. Актинов А.А. и др. О стойкости магнитных жидкостей к воздействию повышенных температур /Физико-химические и прикладные проблемы МЖ: сборник научных трудов/ Ставрополь, СГУ 1997 г.
    2. Зубко В.И. и др. Влияние условий получения МЖ на ее электрофизические свойства /Физико-химические и прикладные проблемы МЖ: сборник научных трудов/ Ставрополь, СГУ 1997 г.
    3. Кожевников В.М. Анизатрония электропроводности дисперсных линейных систем, наведенная внешним воздействием /Физико-химические и прикладные проблемы МЖ: сборник научных трудов/ Ставрополь, СГУ 1997 г.
    4. Арцимович А.А. Движение заряженных частиц в электрическом и магнитном полях. - М.: Наука, 1972.
    5. Бронштейн И.И. Справочник по высшей математике. - М.: Физматгиз, 1981.
    6. Дзаразова Т.П. Практическая физика.: Учебное пособие. - Ставрополь СГПУ, 1994г.
    7. Калашников С.Т. Электричество. - М.: Наука, 1977 г.
    8. Основные формулы физики под ред. Мензела Д.М.: ИЛИ, 1957г.
    9. Полихрониди И.Т. Электро- и магнитополевая аккумуляция электрического заряда в ячейке с МЖ. Проблемы физико-математических наук: Материалы научно-методической конференции преподавателей и студентов «Университетская наука-региону». - Ставрополь: СГУ, 1998 г.
    10. Сивухин Д.В. Общий курс физики, т.3. Электричество. - М.: Наука, 1977 г.
    11. Тамм И.Е. Основы теории электричества. - М.: Наука, 1976 г.
    12. Фершман В.Е. Магнитные жидкости. Минск «Высшая школа», 1998.
    13. Чеканов В.В. и др. Накопление заряда в электрофоренич. ячейке с МЖ. Проблемы физико-математических наук: Материалы научно-методической конференции преподавателей и студентов «Университетская наука-региону». - Ставрополь: СГУ, 1998 г.
  • 30. Влияние фотохимических реакций на процесс лазерного электрохимического осаждения
    Дипломы Физика

    Примером процесса, на основе которого делается вывод о нетепловом действии ИК-излучения, является фотоинициированное разложение двуокиси хлора, протекающее по механизму цепной реакции с вырожденным разветвлением [4]. Схема реакции включает в себя большое число элементарных стадий. Ускорение одних стадий за счет колебательного возбуждения может приводить к сокращению периода индукции разложения, а ускорение других стадий - к его удлинению, т.е. торможению реакции. С ростом температуры период индукции реакции сокращается. На рисунке 4.2 (кривая 1) экспериментальные точки получены путем усреднения большого числа измерений. Видно, что при давлении 0,7 торр ИК-излучение увеличивает период индукции, т.е. тормозит реакцию, а при давлениях, больших 1 торр, уменьшает период индукции, т.е. ускоряет реакцию. Ускорение реакции при давлениях, больших 1 торр, естественно связать с равновесным тепловым разогревом за счет поглощения лазерного излучения. Из экспериментально известной температурной зависимости периода индукции разложения и величины разогрева можно рассчитать зависимость относительного изменения периода индукции за счет равновесного теплового разогрева, вызываемого лазерным излучением (кривая 2). Разность кривых 1 и 2 дает кривую 3, которая характеризует эффект влияния ИК-излучения в термических условиях. Полученный результат не позволяет сделать выбор элементарной стадии, ускорение которой приводит к торможению реакции, но доказывает равновесное, т.е. фотохимическое, действие на реакцию ИК-излучения при низких давлениях, в отличие от эффектов ускорения, которые могут быть соизмеримы с действием равновесного теплового разогрева.

  • 31. Влияние электролита различного состава на удельный расход образцов обожженных анодов при электролитическом получении алюминия
    Дипломы Физика

    Ветюков и др. [14] исследовали зависимость общего расхода углерода от анодной плотности тока. Они предположили, что газифицировавшийся углерод был равен теоретическому расходу, т.е. 0,112 г/(А-ч). Угольная пена была определена посредством дробления твёрдого электролита после эксперимента и выжигания угольной пены при 700 °С. Это могло завысить результаты, так как при такой температуре может уже достаточно интенсивно испаряться твердый электролит. Плотность тока при проведении экспериментов изменялась в диапазоне 0,7-1,5 А/см2. Авторы [14] выяснили, что получается 0,0309 г пены/(А-ч) при анодной плотности тока 1,0 А/см2, т.е. осыпаемость составила 27 %. Ведерников и Ветюков [15], Barat с сотр. [16], Ветюков и Ведерников [17] и Hume с сотр. [18] также изучали влияние анодной плотности тока на расход анода, используя различные анодные материалы. В целом было определено, что увеличение плотности тока приводит к уменьшению расхода углерода, исключая Ревазяна, Смородинова и Коробова, которые нашли минимум в расходе анода при 0,98-1 А/см2 для промышленных электролизёров. Зависимость такого типа может быть объяснена следующим образом: при низкой плотности тока происходит неравномерное окисление анода, что объясняется различиями в реакционной способности гетерогенной поверхности анода, так что некоторые зоны расходуются намного быстрее, чем другие, более пассивные участки. Это приводит к физическому разрушению анода. Значит, низкая плотность тока увеличивает тенденцию пенообразования. Пенообразование приводит к более высокой скорости расхода анода и всегда вероятно образование СО при очень низких плотностях тока. Как только плотность тока увеличивается, пассивные участки анода становятся активными, и начинается более равномерный расход анода. При дальнейшем увеличении плотности тока (выше минимального расхода) на аноде становится высокой термическая нагрузка и в игру вступают другие силы, такие как горение на воздухе боковых сторон и из-за этого расход будет расти.

  • 32. Внедрение приливных электростанций
    Дипломы Физика

    В 1966 г. во Франции на реке Ранс построена первая в мире приливная электростанция. Система использует двадцать четыре 10-мегаваттных турбины, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт*ч электроэнергии. Для этой станции разработан приливный капсульный агрегат, позволяющий осуществлять три прямых и три обратных режима работы: как генератор, как насос и как водопропускное отверстие, что обеспечивает эффективную эксплуатацию ПЭС. По оценкам специалистов, ПЭС Ранс экономически оправдана. Годовые издержки эксплуатации ниже, чем на гидроэлектростанциях, и составляют 4% капитальных вложений. Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на о. Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м. В 1968 г. на побережье Баренцева моря в Кислой губе сооружена первая в нашей стране опытно-промышленная ПЭС. В здании электростанции размещено 2 гидроагрегата мощностью 400 кВт. Основоположниками этого проекта были советские ученые Лев Бернштейн и Игорь Усачев. Впервые в мировой практике гидротехнического строительства станция была возведена наплавным способом, который потом широко стал использоваться при строительстве подводных туннелей, нефтегазовых платформ, прибрежных ГЭС, ТЭС, АЭС и защитных гидротехнических комплексов. В отличие от гидроэнергии рек, средняя величина приливной энергии мало меняется от сезона к сезону, что позволяет приливным электростанциям более равномерно обеспечивать энергией промышленные предприятия. За рубежом разрабатываются проекты приливных электростанций в заливе Фанди (Канада) и в устье реки Северн (Англия) мощностью соответственно в 4 и 10 млн. киловатт, работают небольшие приливные электростанции в Китае. Пока энергия приливных электростанций обходится дороже энергии тепловых электростанций, но при более рациональном осуществлении строительства гидросооружений этих станций стоимость вырабатываемой ими энергии вполне можно снизить до стоимости энергии речных электростанций. Поскольку запасы приливной энергии планеты значительно превосходят полную величину гидроэнергии рек, можно полагать, что приливная энергия будет играть заметную роль в дальнейшем прогрессе человеческого общества. Мировое сообщество предполагает лидирующее использование в XXI веке экологически чистой и возобновляемой энергии морских приливов. Ее запасы могут обеспечить до 15 % современного энергопотребления. В России выполнены проекты Тугурской ПЭС мощностью 8,0 ГВт и Пенжинской ПЭС мощностью 87 ГВт на Охотском море, энергия которых может быть передана в энергодефицитные районы Юго-Восточной Азии. На Белом море проектируется Мезенская ПЭС мощностью 11,4 ГВт, энергию которой предполагается направить в Западную Европу по объединенной энергосистеме "Восток Запад". Наплавная "российская" технология строительства ПЭС позволяет на треть снизить капитальные затраты по сравнению с классическим способом строительства гидротехнических сооружений за перемычками. Ученые, изучая эффективность и экономичность использования приливные электростанции, установили что эти станции являются выгодными во многих аспектах. Например возьмем Тугурскую ПЭС которое является более дешевым и выгодным вложением денежных средств по сравнению с ГЭС. Себестоимость 1кВт электроэнергии составляет примерно 1 руб. при стоимости самой электростанции около 7 миллиардов рублей и мощности 87 ГВт, а себестоимость 1кВт электроэнергии в ГЭС равно 3,4 руб. при стоимости около 8,5 миллиардов рублей.

  • 33. Внутреннее электроснабжение цеха полуфабрикатов мясокомбината
    Дипломы Физика
  • 34. Водохозяйственные расчеты
    Дипломы Физика

    Qзар, м³/сQводоснаб м³/сQфильтр, м³/сQиспарен, м³/сQорашен, м³/сQ?, м³/сW?11241,861,24 3,18,15321241,861,24 3,18,15331241,861,24 3,18,15341241,861,243,723,7210,5427,72051241,861,244,963,7211,7830,98161241,861,246,24,9614,2637,50471241,861,246,26,215,540,76581241,861,246,24,9614,2637,50491241,861,244,963,7211,7830,981101241,861,243,723,7210,5427,720111241,861,24 3,18,153121241,861,24 3,18,153131241,861,24 3,18,153141241,861,24 3,18,153151241,861,24 3,18,15316198,32,97451,9835,9495,94916,855544,33017198,32,97451,9837,9325,94918,838549,54518198,32,97451,9839,9157,93222,804559,97619198,32,97451,9839,9159,91524,787565,19120198,32,97451,9839,9157,93222,804559,97621198,32,97451,9837,9325,94918,838549,54522198,32,97451,9835,9495,94916,855544,33023198,32,97451,983 4,957513,03824198,32,97451,983 4,957513,03825198,32,97451,983 4,957513,03826198,32,97451,983 4,957513,03827198,32,97451,983 4,957513,03828463,76,95554,63713,91113,91139,4145103,66029463,76,95554,63718,54813,91144,0515115,85530463,76,95554,63723,18518,54853,3255140,24631463,76,95554,63723,18523,18557,9625152,44132463,76,95554,63723,18518,54853,3255140,246334206,34,216,812,639,9104,937343104,653,19,39,326,3569,301351241,861,24 3,18,153361241,861,24 3,18,153речной сток водопотребитель бьеф

  • 35. Возбуждение ударных волн в плоскопараллельном режиме. Расчет поля взрыва в различных средах
    Дипломы Физика
  • 36. Возможность постройки тепловой электростанции для ОАО "Челябинский тракторный завод"
    Дипломы Физика
  • 37. Волновой генетический код
    Дипломы Физика

    Способны ли молекулы ДНК и белков к солитонным возбуждениям, предсказанным в многочисленных теоретических моделях? Нами предприняты попытки фиксации нелинейных волн такого рода in vitro методом спектроскопии корреляции фотонов. Выявлены устойчивые эффекты, которые по ряду признаков соответствуют, в частности, процессу спонтанного солитонообразования в рамках явления возврата Ферми-Паста-Улама. [8,19,25,31,32]. Обнаружилось, что при переходе от разбавленного раствора ДНК к полуразбавленному можно зарегистрировать аномально долго затухающие акустические колебания гелевого континуума ДНК. Слабо затухающие колебания исчезают по мере перехода от полуразбавленного к разбавленному раствору и в результате уменьшения длины фрагментов ДНК. Эти данные подтверждают ранние работы для агарозы и коллагена, где впервые обнаружен феномен аномально слабой затухаемости плотностных колебаний биогелей. Аномальное поведение ДНК зарегистрировали после наших наблюдений и японские авторы методом прямой регистрации броуновской динамики флуоресцентно-меченой ДНК. Причем, в работе японцев выявились и другие необычные особенности нелинейной динамики ДНК, которые не укладываются в хорошо разработанные теоретические модели Цимма и Роуза, но которые хорошо соответствуют нашим наблюдениям и трактовке молекул ДНК как структур, резонирующих на особые внешние волновые регуляторные сигналы [25,6,7,15,16,29] (также см. ниже). Такая самоорганизация волновых процессов в ДНК может происходить и при таких физических условиях, когда существенную роль играют кооперативные процессы на уровне макромолекулярного континуума молекул ДНК, приближающегося к структуре хромосом. Чем более структура растворов ДНК отличается от архитектоники ДНК в хромосомах (в приводимых нами экспериментах это относительно короткие фрагменты полимера), тем менее существенны коллективные дальние (в масштабах макромолекулярных протяженностей полинуклеотида) взаимодействия между цепями ДНК, столь важные для эпигенетических функций генома. Ключевым звеном в данных экспериментах является четкая регистрация поведения ДНК in vitro, которое ранее зафиксировано Бреннером и Носсалом для агарозы и коллагена в аналогичных условиях. Это позволяет рассматривать нелинейную динамику такого рода для ДНК и других информационных биополимеров как проявление солитонных свойств в рамках явления возврата Ферми-Паста-Улама (ФПУ). Нелинейная динамика ДНК, ее гидродинамическое поведение и акустика чрезвычайно чувствительны к внешним физическим воздействиям in vitro - энзиматической рестрикции, разбавлению-концентрированию, нагреву-охлаждению, ультразвуковой обработке, слабым механическим воздействиям, облучению ИК-лазерным полем, излучением ФПУ-генератора с широкополосным электромагнитным спектром. Эти и аналогичные воздействия могут и должны в той или иной мере оказывать влияние на генетический аппарат в условиях in vivo, искажающее нормальные эпигенознаковые функции хромосом, что также подтверждается в наших экспериментах. Нелинейная динамика ДНК обнаруживает и другие “аномальные” свойства. Мы зафиксировали резкое различие коэффициентов диффузии для кольцевых и линеаризованных плазмидных ДНК [33], которое также не укладывается в циммовскую теорию поведения полимеров в водных растворах и в этом плане находит подтверждение в работах группы Роберта Пекоры (США) и упоминавшемся исследовании Матсумото с соавторами. Эти необычные свойства ДНК, вероятно, играют важную роль, например, для понимания механизмов управляемого “пилотирования” и точной “посадки” транспозонов ДНК (аналогов плазмид) в пределах жидкокристаллического сверхвязкого и сверхплотного континуума хромосом. Эта задача находится в области общей и нерешенной проблемы молекулярной биологии - проблемы самоорганизации внутриклеточных, межклеточных и межтканевых структур, их “взаимоузнаваний”. Ясно, что, зная волновые, гидродинамические и иные механизмы точного пилотирования таких немаловажных для человека транспозонов, как онкогены и обратнотранскриптазный геном вируса иммунодефицита человека, мы будем иметь возможность корректировать их в необходимом направлении, исключающем патогенез. Не менее существенным представляется факт обнаружения нелинейной динамики ДНК с признаками поведения солитонов по типу явления возврата ФПУ. Это также дает вклад в осознание принципов макромолекулярных и надмолекулярных взаимоузнаваний в организме по линии солитонно-резонансных дальних взаимодействий и делает более реалистичной попытку дать новую версию работы генома эукариот, обсуждавшуюся выше. Мы обнаружили и другие необычные проявления физических свойств ДНК - ее последействие или следовую память [25]. Этот феномен ставит проблему новых типов геномных функций. Возможно, это явление тесно связано с особой памятью генома высших биосистем, а также, вероятно, и с памятью коры головного мозга. Но если для ассоциативной корковой памяти и памяти генома растений нами и другими даны физико-математические модели в терминах и понятиях голографических и солитонных процессов, то память последействия ДНК - явление далеко не ясное и нуждающееся в более глубоком исследовании и осторожной трактовке. Этот эффект зарегистрирован нами при динамическом лазерном светорассеянии на препаратах высокоочищенных ядер из эритроцитов кур и на высокополимерной чистой ДНК из зобной железы теленка [25].По сути, аналогичное явление наблюдала группа Р.Пекоры (США) и назвала его “MED-effect” (Mimicing Effect of Dust), т. е. эффект, имитирующий пыль. Так же как и в наших работах, этот феномен обнаружен методом корреляционной лазерной спектроскопии на рестриктных фрагментах ДНК строго определенной длины. И в этом случае ДНК вела себя “аномальным”образом: зондирующие фотоны дифрагировали не только на полинуклеотидных цепях, но и на “посторонних частицах”, которых в препарате заведомо не было, что обеспечивалось специальным обеспыливанием. Этот никак не прокомментированный группой Р. Пекоры эффект сильно затруднил ей попытки объяснить поведение ДНК с позиций казалось бы хорошо разработанной теории Цимма и Роуза для динамики полимеров в водных растворах. И это еще раз было подтверждено в Японии Матсумото и др. прямым наблюдением “аномально” броунирующей флуоресцентно-меченой ДНК. Представляется, что в работе группы Пекоры cветорассеяние происходило не только на реальных фрагментах ДНК, но и на волновых следовых структурах ДНК, оставляемых броунирующими молекулами этого суперинформационного биополимера в духе теории физического вакуума, где постулируется идея генерации фантомных торсионных аксионно-кластерных эквивалентов физических тел.

  • 38. Вопросы реконструкции линии 10 кВ подстанции "Василево", с заменой масляных выключателей на вакуумные, выбором разъединителей и трансформаторов тока
    Дипломы Физика

    Содержит датчик температуры, выход которого через преобразователь температуры в напряжение подключен к первому входу сумматора, датчик тока нагрузки, выход которого через функциональный преобразователь тока нагрузки связан с вторым входом сумматора, через первый пороговый орган-с органом выдержки времени, выход которого подключен к выходному органу, отключающееся тем, что с целью повышения точности работы путем учета зависимости повышения зависимости повышения температуры обмотки над температурой охлаждающего масла от продолжительности протекания тока, в него введены блок инерционного звена, управляемый генератором импульсов, второй пороговый орган и элемент ИЛИ, а функциональный преобразователь тока нагрузки выполнен на квадраторе, при этом выход функционального преобразователя тока нагрузки через блок инерционного звена подключен к второму входу сумматора, выход которого через второй пороговый орган подсоединен к первому элемента ИЛИ, выход которого подключен к входу органа выдержки времени, а к второму элемента или подключен выход первого порогового органа.

  • 39. Выбор и обоснование структурной и принципиальной электрических схем
    Дипломы Физика

     

    1. СН 245-71. Санитарные нормы проектирования промышленных предприятий.
    2. ГОСТ 12.1.038-82. ССБТ. Предельно допустимые уровни напряжений прикосновений и токов.
    3. ГОСТ 12.1.019-79. ССБТ. Электробезопасность. Общие требования.
    4. ГОСТ 12.1.030-81. ССБТ. Защитное заземление. Зануление.
    5. ОНТП 24-86. Общесоюзные нормы технологического проектирования. Определение категорий помещений и зданий по взрывопожарной и пожарной опасности.
    6. ГОСТ 12.4.009-85. ССБТ. Пожарная техника для защиты объектов. Общие требования.
    7. ГОСТ 12.1.033-81. ССБТ. Пожарная безопасность объектов с электрическими сетями.
    8. СНиП II-4.79. Строительные нормы и правила. Нормы проектирования. Естественное и искусственное освещение.
    9. ГОСТ 12.2.032-78 ССБТ. Рабочее место при выполнении работ сидя. Общие эргономические требования.
    10. ГОСТ 22.269-76. Система человек-машина. Рабочее место оператора. Временное расположение элементов рабочего места. Общие эргономические требования.
    11. ГОСТ 27.818-88. Машины вычислительные и системы обработки данных. Допустимые уровни шума на рабочих местах и методы его определения.
    12. ГОСТ 12.1.005-88 ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования.
    13. ГОСТ 12.4.113-82 ССБТ. Работы учебные лабораторные. Общие требования безопасности.
    14. СанПиН 2.2.2.542-96. Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организация работы.
    15. ГОСТ 12.0.003-74. ССБТ. Опасные и вредные производственные факторы.
    16. СН 952-75. Санитарные правила организации процесса пайки мелких деталей сплавами, содержащими свинец.
    17. ГОСТ 18298-79. Стойкость аппаратуры, комплектующих элементов и материалов радиационная. Термины и определения.
    18. Мырова Л.О., Чипиженко А.З. Обеспечение радиационной стойкости аппаратуры связи. - М.: Радио и связь, 1983. - 216 с., ил.
    19. Вавилов В.С., Ухин Н.А. Радиационные эффекты в полупроводниках и полупроводниковых приборах. - М.: Атомиздат, 1969. - 311 с.
  • 40. Выбор и проектирование электрооборудования УЭЦН для откачки нефти из скважин
    Дипломы Физика

    Схема с АПЧ, показанная на рис. 2.9, - нереверсивная из-за нереверсивности выпрямителя. При возникновении режима генераторного торможения избыточная энергия идет на заряд конденсатора С, напряжение на котором нарастает лавинообразно, и для предотвращения аварии используется защита, контролирующая это напряжение. Возможны схемные решения с использованием диодно-тиристорного или тиристорного реверсивного выпрямителя. Но в промышленных установках такие схемы применяются очень редко. Если же в системе ЭП может возникать необходимость экстренного торможения, то используется схема ПЧ с дополнительным транзистором и тормозным резистором, который устанавливается вне корпуса ПЧ (рис. 14, а). Управление транзистором, включающим тормозной резистор, может быть организовано автономно от управления АИН с контролем абсолютного значения напряжения Ud (рис. 2.13, б), где Uвкл и Uоткл - уровни срабатывания порогового элемента, управляющего тормозным транзистором, tвкл и tоткл - соответственно время его включенного и отключенного состояний.