Информация по предмету Авиация, Астрономия, Космонавтика

  • 241. Ракеты С.П. Королева
    Другое Авиация, Астрономия, Космонавтика

    Тактико-технические характеристикиМаксимальная дальность стрельбы, км8000Стартовая масса, т283,0Масса полезной нагрузки, кгдо 5400Масса топлива, т250Длина ракеты, м31,4Диаметр ракеты, м11,2Тип головной частиМоноблочная, ядерная, отделяемаяДвухступенчатая ракета Р-7 выполнена по “пакетной ” схеме. Ее первая ступень представляла собой четыре боковых блока, каждый длиной 19 м и наибольшим диаметром 3 м, расположенных симметрично вокруг центрального блока (вторая ступень ракеты) и соединенных с ним верхним и нижним поясами силовых связей. Конструкция всех блоков одинакова и включала опорный конус, топливные баки, силовое кольцо, хвостовой отсек и двигательную установку. На каждом блоке первой ступени устанавливались ЖРД РД-107 конструкции ГДЛ-ОКБ, руководимого академиком В. Глушко, с насосной подачей компонентов топлива. Он был выполнен по открытой схеме и имел шесть камер сгорания. Две из них использовались как рулевые. ЖРД развивал тягу 78 т у земли.
    Центральный блок ракеты состоял из приборного отсека, баков для окислителя и горючего, силового кольца, хвостового отсека, маршевого двигателя и четырех рулевых агрегатов. На второй ступени устанавливался ЖРД РД-108, аналогичный по конструкции с РД-107, но отличавшийся, в основном, большим числом рулевых камер. Он развивал тягу у земли до 71 т и работал дольше, чем ЖРД боковых блоков.
    Для всех двигателей использовалось двухкомпонентное топливо: окислитель переохлажденный жидкий кислород, горючее керосин Т-1. Для обеспечения работы автоматики ракетных двигателей, применялись перекись водорода и жидкий азот. Чтобы достичь заданной дальности полета конструкторы установили автоматическую системы регулирования режимов работы двигателей и систему одновременного опорожнения баков (СОБ), что позволило сократить гарантированный запас топлива. Конструктивно-компоновочная схема Р-7 обеспечивала запуск всех двигателей при старте на земле с помощью специальных пирозажигательных устройств, установленных в каждую из 32 камер сгорания.

  • 242. Расчет закрытой косозубой нереверсивной турбины
    Другое Авиация, Астрономия, Космонавтика

    - коэффициент учитывающий повышенную нагрузочную способность косозубых передач по сравнению с прямозубыми передачами за счёт увеличения контактных линий. Для прямозубых колёс , а для косозубых и конических от 1,15 до 1,35

  • 243. Расширение вселенной и красное смещение
    Другое Авиация, Астрономия, Космонавтика

    В 20-х годах, когда астрономы начали исследование спектров звезд других галактик, обнаружилось нечто еще более странное: в нашей собственной Галактике оказались те же самые характерные наборы отсутствующих цветов, что и у звезд, но все они были сдвинуты на одну и ту же величину к красному концу спектра. Чтобы понять смысл сказанного, следует сначала разобраться с эффектом Доплера. Как мы уже знаем, видимый свет это колебания электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высокаот четырехсот до семисот миллионов миллионов волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причём самые низкие частоты соответствуют красному концу спектра, самые высокие фиолетовому. Представим себе источник света, расположенный на фиксированном расстоянии от нас (например, звезду), излучающий с постоянной частотой световые волны. Очевидно, что частота приходящих волн будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно). Предположим теперь, что источник начинает двигаться в нашу сторону. При испускании следующей волны источник окажется ближе к нам, а потому время, за которое гребень этой волны до нас дойдет, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых нами за одну секунду (т.е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой называется эффектом Доплера, и этот эффект обычен даже в нашей повседневной жизни. Прислушайтесь к тому, как идет по шоссе машина: когда она приближается, звук двигателя выше (т. е. выше частота испускаемых им звуковых волн), а когда, проехав мимо, машина начинает удаляться, звук становится ниже. Световые волны и радиоволны ведут себя аналогичным образом. Эффектом Доплера пользуется полиция, определяя издалека скорость движения автомашин по частоте радиосигналов, отражающихся от них. Доказав, что существуют другие галактики, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В то время большинство ученых считали, что движение галактик происходит случайным образом и поэтому спектров, смещенных в красную сторону, должно наблюдаться столько же, сколько и смещенных в фиолетовую. Каково же было удивление, когда у большей части галактик обнаружилось красное смещение спектров, т. е. оказалось, что почти все галактики удаляются от нас! Еще более удивительным было открытие, опубликованное Хабблом в 1929 г.: Хаббл обнаружил, что даже величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Иными словами, чем дальше находится галактика, тем быстрее она удаляется! А это означало, что Вселенная не может быть статической, как думали раньше, что на самом деле она непрерывно расширяется и расстояния между галактиками все время растут.

  • 244. Расширяющася Вселенная
    Другое Авиация, Астрономия, Космонавтика
  • 245. Расширяющаяся Вселенная и красное смещение
    Другое Авиация, Астрономия, Космонавтика

    Поэтому историю научной космогонии справедливее было бы начать не с Декарта, а с Канта, нарисовавшего картину "механического происхождения всего мироздания". Именно Канту принадлежит первая в научно-космогоническая гипотеза о естественном механизме возникновения материального мира. В безграничном пространстве Вселенной, воссозданной творческим воображением Канта, существование бесчисленного количества других солнечных систем и иных млечных путей столь же естественно, как и непрерывное образование новых миров и гибель старых. Именно с Канта начинается сознательное и практическое соединение принципа всеобщей связи и единства материального мира. Вселенная перестала быть совокупностью божественных тел, совершенных и вечных. Теперь перед изумленным человеческим разумом предстала мировая гармония совершенно иного рода естественная гармония систем взаимодействующих и эволюционирующих астрономических тел, связанных между собой как звенья одной цепи природы. Однако необходимо отметить две характерные особенности дальнейшего развития научной космогонии. Первой из них является то, что послекантовская космогония ограничила себя пределами Солнечной системы и вплоть до середины ХХ века речь шла только о происхождении планет, тогда как звезды и их системы оставались за горизонтом теоретического анализа. Второй особенностью является то, что ограниченность наблюдательных данных, неопределенность доступной астрономической информации, невозможность опытного обоснования космогонических гипотез в конечном счете обусловили превращение научной космогонии в систему абстрактных идей, оторванных не только от остальных отраслей естествознания, но и от родственных разделов астрономии. [2]

  • 246. Реактивні двигуни
    Другое Авиация, Астрономия, Космонавтика

    Як відомо, коефіцієнт корисної дії механізму, пристосування чи двигуна суть відношення корисної роботи до всієї затраченої роботи. Корисною частиною ракети є, як вже було сказано, її оболонка, а маса оболонки, обчислена з рівняння Ціолковського, (без урахування опору повітря) повинна становити приблизно частину маси ракети. У сучасних балістичних ракет кінцева маса у сотні разів менша стартової маси. Значить, і прискорення також у сотні разів зростає по мірі витрати палива. Звідси випливає, що приріст швидкості, що його отримує ракета при витраті однієї і тієї ж кількості палива, сильно залежить від того, у який момент часу це паливо витрачається: доки запас палива на борту великий і маса ракети велика, приріст швидкості малий; коли палива залишилось мало і маса ракети значно зменшилася, приріст швидкості великий. По цій причині навіть велике збільшення запасу палива не може значно підвищити кінцеву швидкість ракети: адже додаткова кількість палива буде використана тоді, коли маса ракети велика, а прискорення мале, а значить, малий і додатковий приріст швидкості. Крім того, якщо ми збільшуватимемо масу палива, ми зменшимо ККД реактивного двигуна, і без того найменший серед ККД всіх відомих двигунів і машин на Землі. Зате збільшення швидкості реактивного струменя при незмінному запасі палива (ККД хоча б не зменшується!) дозволяє значно збільшити кінцеву швидкість ракети. Так, збільшуючи швидкість реактивного струменя, не змінюючи секундної витрати палива, ми, тим самим, збільшуємо прискорення у тому ж відношенні. Для збільшення швидкості реактивного струменя соплу ракети надають спеціальної форми. Оскільки швидкість реактивного струменя збільшується по мірі росту температури газу, що утворює струмінь, вибирають паливо, що дає по можливості вищу температуру згорання.

  • 247. Реактивные двигатели, устройство, принцип работы
    Другое Авиация, Астрономия, Космонавтика

    Рассмотрим этот процесс применительно к реактивным двигателям. Начнем с камеры сгорания двигателя, в котором тем или иным способом, зависящим от типа двигателя и рода топлива, уже создана горючая смесь. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или, наконец, какое-нибудь твёрдое топливо пороховых ракет. Горючая смесь может сгорать, т.е. вступать в химическую реакцию с бурным выделением энергии в виде тепла. Способность выделять энергию при химической реакции, и есть потенциальная химическая энергия молекул смеси. Химическая энергия молекул связана с особенностями их строения, точнее, строения их электронных оболочек, т.е. того электронного облака, которое окружает ядра атомов, составляющих молекулу. В результате химической реакции, при которой одни молекулы разрушаются, а другие возникают, происходит, естественно, перестройка электронных оболочек. В этой перестройке - источник выделяющейся химической энергии. Видно, что топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много тепла, а также образуют при этом большое количество газов. Все эти процессы происходят в камере сгорания, но остановимся на реакции не на молекулярном уровне (это уже рассмотрели выше), а на "фазах" работы. Пока сгорание не началось, смесь обладает большим запасом потенциальной химической энергии. Но вот пламя охватило смесь, ещё мгновение - и химическая реакция закончена. Теперь уже вместо молекул горючей смеси камеру заполняют молекулы продуктов горения, более плотно "упакованные". Избыток энергии связи, представляющей собой химическую энергию прошедшей реакции сгорания, выделился. Обладающие этой избыточной энергией молекулы почти мгновенно передали её другим молекулам и атомам в результате частых столкновений с ними. Все молекулы и атомы в камере сгорания стали беспорядочно, хаотично двигаться со значительно более высокой скоростью, температура газов возросла. Так произошел переход потенциальной химической энергии топлива в тепловую энергию продуктов сгорания.

  • 248. Рельеф спутников Юпитера
    Другое Авиация, Астрономия, Космонавтика

    Список Литературы

    1. Иванов М.А., Котова И., Базилевский А.Т., Результаты 32 микросимпозиума «Вернадский-Браун», 2000, стр. 68-69.
    2. Иванов М.А., Базилевский А.Т., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 29-30.
    3. Короновский Н.В., Ясаманов Н.А., «Геология», 2003, 387 стр., Москва, Наука.
    4. Леонтьев О.К., Рычагов Г.И., Общая геоморфология. Высшая школа, Москва. 1988, 319 стр.
    5. Лукашов А.А., Рельеф планетных тел. МГУ. 1996, 111 стр.
    6. Маракушев А.А. и др., Космическая петрология, 2003, стр. 358-365.
    7. Уральская В.С., Земля и Вселенная. №5/2002. Стр. 25-29
    8. Хаин В.Е., Ломизе М.Г., Геотектоника с основами геодинамики. КДУ, Москва. 2005, 560 стр.
    9. Шевченко В.В., Земля и Вселенная №3/2004 стр. 104-106
    10. Щукин И.С., Общая геоморфология, т.2. МГУ. 1964, 563 стр.
    11. Fagents S.A., Kadel S.D., Greeley R., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
    12. Fagents S.A., Greeley R., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
    13. Fagents S.A., Kadel S.D., Greeley R., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
    14. Greeley R., Planetary Landscapes, 1985, Essex, UK.
    15. Head J.W., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 18-19.
    16. Head J.W., Pappalardo R. и др., 29 конференция по наукам о планетах и Луне, LPI, Texas, 1998.
    17. Head J.W., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
    18. Hoppa G.V., Tufts B.R., Greenberg R., Geissler P.E., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
    19. Keszthelyi L., McEwen A., Klaasen K., 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998: http://www.lpi.usra.edu/meetings/LPSC98
    20. McEwen A.S. 1998 Science, 281, 87-90
    21. Pappalardo R.Т., Greeley R. и др., Результаты 26 микросимпозиума «Вернадский-Браун», 1997, стр. 94-95.
    22. Pappalardo R.T., Greeley R. и др., Результаты 26 микросимпозиума «Вернадский-Браун», 1997, стр. 100-101.
    23. Radebaugh J., Keszthelyi L., McEwen A., 30 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1999.
    24. Radebaugh J., Keszthelyi L., McEwen A., 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
    25. Schenk P.M., Wilson R.R., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
    26. Schenk P., Bulmer M, 31 конференция по наукам о планетах и Луне LPI, Хьюстон, 2000.
    27. Schenk P.M., 1997, http://www.lpi.usra.edu/resources/outerp/gany.html
    28. Schuster P. и др., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 95.
    29. Spaun N.A., 34 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2003.
    30. Spaun N.A., Результаты 30 микросимпозиума «Вернадский-Браун», 1999, стр. 107-108.
    31. Spencer, J.R., 1997, The Pele plume (Io): Observations with the Hubble Space Telescope. Geophys. Res. Lett. 24, 2471-2474.
    32. Turtle E.P., Jaeger W.L., Keszthelyi L.P., McEwen A.S., 32 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2001.
    33. Wilson L., Head J.W. 29 конференция по наукам о планетах и Луне, LPI, Хьюстон, 1998.
    34. Wilson R.R., Schenk P.M., 2003, 34 конференция по наукам о планетах и Луне, LPI, Хьюстон, 2003 http://www.lpi.usra.edu/meetings/lpsc2003/
    35. www.nasa.gov
    36. www.astronet.ru
    37. http://www.astro.cornell.edu
    38. http://www.lpi.usra.edu
    39. http://www.astrolab.ru/
  • 249. Реферат для выпускных экзаменов
    Другое Авиация, Астрономия, Космонавтика

    всё вышеизложенное, несомненно, свидетельствует, что проблемы Тунгусского метеорита - это серьёзнейшие междисциплинарные проблемы, разрешение которых имело и будет иметь важное значение для развития фундаментальной науки. Однако, как написал в одной из своих последних статей о Тунгусском метеорите Н. Васильев (Земля и Вселенная 1989. -№3), «для того чтобы обеспечить реализацию этой перспективы, нужны условия, и прежде всего сохранение объекта исследования, которым является район падения Тунгусского метеорита. Время, к сожалению, течет быстро. Следы и свидетели катастрофы исчезают. Нужно сделать всё возможное для того, чтобы сохранить район падения Тунгусского космического тела, сохранить и само существование которого оказалось под серьёзной угрозой из-за возможности промышленного освоения. Принятое в 1987г. решение об объявлении этого района государственным заказником отодвинуло, но не ликвидировало угрозу. Радикальным решением проблемы может быть только объявление его государственным заповедником, чтобы сохранить этот уникальный район не только для советской, но и мировой науки.

  • 250. Рождение Вселенной
    Другое Авиация, Астрономия, Космонавтика

    Космология, строение Вселенной, прошлое, настоящее и будущее нашего мира - эти вопросы всегда занимали лучшие умы человечества. И составители Ветхого Завета, и древние философы из разных уголков света предлагали свои, порой эволюционные, варианты космологии, основанные на временной шкале, и описывали некую последовательность событий в образах своего времени. Представления наших предков не так уж кардинально отличаются от современных моделей, опирающихся на данные современной наблюдательной астрономии, в первую очередь внеземной. В 1972 г. Киржниц и Линде пришли к выводу, что в ранней Вселенной происходили своеобразные фазовые переходы, когда различия между разными типами взаимодействий вдруг исчезали: сильные и электрослабые взаимодействия сливались в одну единую силу. (Единая теория слабого и электромагнитного взаимодействий, осуществляемых кварками и лептонами посредством обмена безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие), создана в конце 1960-х гг. Стивеном Вайнбергом, Шелдоном Глэшоу и Абдусом Саламом.) В дальнейшем Линде сосредоточился на изучении процессов на еще более ранних стадиях развития Вселенной, в первые 10-30 с после ее рождения. Раньше казалось маловероятным, что до нас может дойти эхо событий, происходивших в первые миллисекунды рождения Вселенной. Однако в последние годы современные методы астрономических наблюдений позволили заглянуть в далекое прошлое. [3, c. 32-43]

  • 251. Рождение звезд
    Другое Авиация, Астрономия, Космонавтика

    Значение газово-пылевых комплексов в современной астрофизике очень велико. Дело в том, что уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с важнейшим процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразоания? Прежде всего следует подчеркнуть, что уже по крайней мере с сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности (например, распределение звезд по классам, или, что практически одно и тоже, по спектральным классам), необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

  • 252. Розміри і структура нашої Галактики
    Другое Авиация, Астрономия, Космонавтика

    Природа сама придумала для астрофізиків гігантський всехвильовий космічний телескоп, заснований на ефекті гравітаційного лінзування. Це явище, засноване на загальній теорії відносності, було теоретично передбачене в тридцяті роки ХХ століття Альбертом Ейнштейном. Якщо на шляху світла від далекого джерела до нас є який-небудь масивний об'єкт, наприклад типу, то промені світла в її полі тяжіння будуть викривлятися, і галактика виступить у ролі лінзи, що збирає світло. Результат, зокрема, може полягати в появі кратного (подвійного, потрійного і т.д.) Зображення одного і того ж об'єкта, або посилення його яскравості, якщо Земля виявилася на потрібній відстані від гравітаційної лінзи. Перша гравітаційна лінза була відкрита в 1979 р. Це був квазар. Зараз відомо більше 25 гравітаційних лінз. Серед гравітаційних лінз зустрічаються утворення різної форми, а найбільш ефектними виглядають хрести і кільця Ейнштейна. Природа ж прихованої маси у Всесвіті залишається незрозумілою до теперішнього часу.

  • 253. Самолеты
    Другое Авиация, Астрономия, Космонавтика

     

    1. Числовая последовательность - это функция, заданная на множестве натуральных чисел и принимающая дискретные значения (не непрерывные).{yn} - ограниченная, если существует такое M (M>0), что для всякого n выполняется нер-во: -M<=yn<=M. {yn}- возрастающая, если для всех n: yn+1>=yn. Последовательность монотонна если она строго возрастает или убывает.
    2. Число А называется пределом {yn} при n стремящемся к бесконечности, если для всякого Е>0, как угодно малого, существует такой номер N, зависящий от Е (N=N(E)), что для всех n>N будет выполняться нер-во |yn-A|<=E. Достаточное условие: Если {yn} возрастает (убывает) и ограничена сверху (снизу), то последовательность имеет предел.
    3. Число А называется пределом f(x) при x, стремящемся к x0, если для всякого сколь угодно малого числа Е существует б=б(Е)>0, что выполняется нер-во: |f(x)-A|<=E, для всякого х принадлежащего: х0-б<=x<=x0+б. f(x) - бесконечно малая, если lim f(x)=0, при х стремящемся к х0. f(x) - бесконечно большая, если lim f(x)=бесконечности, при х стремящемся к х0. f(x) - ограничена в данном интервале, если существует такое число М (М>0), что при всех значениях х, принадлежащих этому интервалу, выполняется |f(x)|<=M. Функция называется ограниченной при х стремящемся к х0, если в некоторой окрестности х0 она ограничена.
    4. Пусть l, b - б.м. в некотором процессе и lim l/b=C 1)C не равно 0 и бесконечности => l, b - одного порядка малости. 2) С=0 => l - более высокого порядка малости. 3) С=бесконечности => b - более высокого порядка малости. Сумма двух, трех и вообще конечного числа б.м. величин есть величина б.м. Произведение б.м. на ограниченную функцию есть б.м. Частное от деления б.м. на функцию, предел которой отличен от 0, есть величина б.м.
    5. Предел суммы двух слагаемых = сумме пределов этих слагаемых. Предел произведения двух множителей = произведению пределов этих множителей. Предел частного = частному от деления пределов, если только предел знаменателя не 0.
    6. Если функция имеет предел, то её можно представить как сумму постоянной, равной её пределу и б.м. величины. Если функцию можно представить как сумму постоянной и б.м. величины, то постоянное слагаемое есть предел функции. Пусть есть f(x) и g(x) и существуют их пределы при х стремящемся к х0, равные соответственно А и В, и f(x)>g(x) в окрестности х0 => A>=B => lim f(x)>=lim g(x).
    7. Если значения f(x) заключены между соответствующими значениями F(x) и Ф(х), стремящихся к одному и тому же пределу А ( при х стремящемся к х0), то f(x) при х стремящемся к х0 также имеет предел =А. 1-ый замечательный предел: lim sinx/x=1 при х стремящемся к 0.
    8. 2-ой замечательный предел: lim(1+1/n)n=e, при х стремящемся к бесконечности. е=2,718…
    9. Функция y=f(x) называется непрерывной в точке х0, если эта функция определена в какой-нибудь окрестности точки х0 и если lim дельта y=0, при дельта х стремящемся к нулю. Дельта у=f(x+x0)-f(x0).
    10. Пусть f(x) и g(x) непрерывны в точке а, тогда их сумма (произведение) (частное, если g(a) не =0) тоже непрерывны в точке а.
    11. Сложная функция - функция от функции. Сложная функция, состоящая из простых непрерывна, если непрерывны все простые функции. Функция непрерывная в замкнутом интервале, хотя бы в одной точке интервала принимает наибольшее значение и хотя бы в одной наименьшее. Функция, непрерывная в замкнутом интервале и принимающая на концах этого интервала значения разных знаков, хотя бы один раз обращается в ноль внутри интервала.
    12. Если в какой-либо точке х0 функция не является непрерывной, то точка х0 называется точкой разрыва. Пусть х стремиться к х0, оставаясь все время слева от х0, т.е. будучи меньше х0, и если при этом условии значение функции f(x) стремится к пределу, то он называется левым пределом (правый аналогично). Точкой разрыва 1-го рода f(x) называется такая точка х0, в которой f(x) имеет левый и правый пределы, не равные между собой.(все остальные точки разрыва- 2-го рода).
    13. Производной данной функции называется предел отношения приращения функции к приращению независимой переменной при произвольном стремление этого приращения к нулю: f'(x)=lim(f(x+дельта x)-f(x))/дельта х, при х стремящемся к 0. Производная характеризует скорость изменения какой-нибудь величины. Значение f'(x) равно угловому коэффициенту касательной к графику функции y=f(x) в точке с абсциссой х0.
    14. Производная суммы конечного числа функций = сумме производных слагаемых. Производная произведения двух функций равна сумме произведений производной 1-ой функции на 2-ую и производной 2-ой на 1-ую. Производная частного 2-х функций = дроби, знаменатель которой = квадрату делителя, а числитель - разности между производной делимого на делитель и произведением делимого на производную делителя.
    15. Производная сложной функции равна производной заданной функции по промежуточному аргументу, умноженный на производную этого аргумента по независимой переменной. Задание функциональной зависимости между двумя переменными, состоящее в том, что обе переменные определяются каждая в отдельности как функция одной и той же вспомогательной переменной, называется параметрическим.
    16. Дифференциал функции называется величина, пропорциональная бесконечно малому приращению аргумента дельта х и отличающаяся от соответствующего приращения функции на бесконечно малую величину более высокого порядка чем дельта х (dy=f'(x)dx). Дифференциал dy функции y=f(x) в точке х изображается приращением ординаты точки касательной, проведенной к линии y=f(x) в соответствующей ее точке (x,f(x)). Дифференциал функции y=f(u) сохраняет одно и тоже выражение независимо от того, является ли аргумент u независимой переменной или функцией от независимой переменной.
    17. Касательной к графику f(x) в точке называется предельное положение прямой, проходящую через данную точку, когда эта точка стремиться слиться с графиком f(x). Если значение производной от функции y=f(x) при х=х0 равно f(x0), то прямая, проведенная через данную точку с угловым коэфициентом, равным f'(x), является касательной к графику функции в данной точке.(y-y0=f'(x0)(x-x0)) . Нормалью к линии ее данной точке называется прямая перпендикулярная касательной. (y-y0=-1/f'(x0)(x-x0)).
    18. Функция y=f(x) называется не дифференцируемой в точке х, если она не имеет в этой точке дифференциал.
    19. Пусть f(x) непрерывна на замкнутом интервале [a,b] и дифференцируема во всех его точках и на концах отрезка она принимает значения f(a)=f(b), тогда существует такая точка С, что a<C<b и f'(C)=0. На линии f(x), где f(x) удовлетворяет условиям теоремы Ролля найдется точка касательная в которой || Ox.
    20. Если f(x) непрерывна в замкнутом интервале [a,b] и дифференцируема во всех его точках, то в этом интервале существует хотя бы одно значение х=с для которого: f(a)-f(b)/b-a=f'(c). Если выполняются условия Теоремы Лагранжа, то касательная в данной точке будет || хорде связывающей точки интервала.
    21. Т. Коши: пусть f(x) непрерывна на [a,b] и дифференцируема на (а,b);g(x) - удовлетворяет тем же условиям и g'(x) не =0 для всех х на этом промежутке, тогда существует точка С принадлежащая (a,b), что f(b)-f(a)/g(b)-g(a)=f'(c)/g'(c). Т. Лапиталя: Пусть функции f(x) и g(x) при х стремящемся а (или к бесконечности) совместно стремятся к 0 или бесконечности. Если отношение их производных имеет предел, то отношение самих функций так же имее предел = отношению произодных.
    22. Т. Тейлора: Если f(x) обладает в замкнутом промежутке (a,b) производными до n+1-го порядка включительно, то f(b)=f(a)+f'(a)/1!*(b-a)+f''(a)/2!*(b-a)2+…+f(n)(a)/n!*(b-a)n+f(n+1)(c)/(n+1)!(b-a)n+1, где с - некоторое число лежащее между а и b. Rn = fn+1(c)/(n+1)!*(b-a)n+1 - остаточный член в форме Тейлора.
    23. Формула Маклорена - формула Тейлора при а=0. f(x)=f(0)+f'(0)/1!*x+…+fn(0)/n!*xn+f(n+1)(C)/(n+1)!*xn+1.
    24. Необходимое условие: Если f(x) в интервале возрастает (убывает), то ее производная f'(x)>=0 (f'(x)<=0). Достаточное условие: Если f'(x) от f(x) всюду на интервале положительна (отрицательна), f(x) в этом интервале возрастает (убывает).
    25. Точка х=х0 называется глобальным минимумом (максимумом) f(x) на множестве m, если для всех х, принадлежащих m f(x)>f(x0) (f(x)<f(x0)). Точка х=х0 называется локальным минимумом функции f(x) если существует б-окрестность точки х0, что для всех х кроме х0 из этой окрестности будет выполнено f(x0+дельта х)>x0.Необходимое условие: пусть функция f(x) дифференцирована в точке х0 и ее окрестности тогда f'(x)=0.
    26. Достаточное условие (1-го порядка): Точка х0 является точкой экстремума функции f(x), если производная f(x) при переходе х через х0 меняет знак.
    27. Точки, где 1-ая производная обращается в 0 называют стационарными точками. Достаточное условие 2-го порядка: пусть точка х0 - стационарна и существует f''(x0) - непрерывна, тогда если f''(x0)>0 => x0- точка минимума.(f''(x0)>0 => x0- точка максимума.
    28. Дуга называется выпуклой, если она пересекается с любой своей секущей не более чем в двух точках. Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой. Если х0 - абсцисса точки перегиба, то либо f ''(x0)=0, либо не существует.
    29. Если f ''(x) всюду в интервале отрицательна (положительна), то дуга линии y=f(x), соответствующая этому интервалу, выпуклая (вогнутая).
    30. Прямая линия называется асимптотой графика функции, если расстояние точки графика от нашей прямой стремится к нулю при неограниченном удалении этой точки от начала координат. Вертикальные асимптоты: если lim f(x)=бесконечности при х стремящемся к х0, то линия y=f(x) имеет асимптоту х=х0. Наклонные асимптоты: Если f(x)/x при х стремящемся к бесконечности стремиться к конечному пределу а и если f(x)-ax при х стремящемся к бесконечности стремиться к конечному пределу b, то линия y=f(x) имеет асимптоту y=ax+b.
  • 254. Сатурн и его спутники
    Другое Авиация, Астрономия, Космонавтика

    Эти предложения подтвердились. Еще при подлете «Пионера-11» к Сатурну его приборы зарегистрировали в около планетном пространстве образования, типичные для планеты, обладающей ярко выраженным магнитным полем: головную ударную волну, границу магнитосферы (магнитопаузу), радиационные пояса (Земля и Вселенная, 1980, N2, с.22-25 - Ред.). В целом магнитосфера Сатурна весьма сходна с земной, но, конечно, значительно больше по размерам. Внешний радиус магнитосферы Сатурна в подсолнечной точке составляет 23 экваториальных радиуса планеты, а расстояние до ударной волны - 26 радиусов. Для сравнения можно напомнить, что внешний радиус земной магнитосферы в подсолнечной точке - около 10 земных радиусов. Так что даже по относительным размерам магнитосфера Сатурна превосходит земную более чем вдвое. Радиационные пояса Сатурна настолько обширны, что охватывают не только кольца, но и орбиты некоторых внутренних спутников планеты. Как и ожидалось, во внутренней части радиационных поясов, которая «перегорожена» кольцами Сатурна, концентрация заряженных частиц значительно меньше. Причину этого легко понять, если вспомнить, что в радиационных поясах частицы совершают колебательные движения примерно в меридиональном направлении, каждый раз пересекая экватор. Но у Сатурна в плоскости экватора располагаются кольца: они поглощают почти все частицы, стремящиеся пройти сквозь них. В результате внутренняя часть радиационных поясов, которая в отсутствие колец была бы в системе Сатурна наиболее интенсивным источником радиоизлучения, оказывается ослабленной. Тем не менее «Вояджер-1», приблизившись к Сатурну, все же обнаружил нетепловое радиоизлучение его радиационных поясов.

  • 255. Сатурн как планета
    Другое Авиация, Астрономия, Космонавтика

    Ниже атмосферы простирается океан жидкого молекулярного водорода. На глубине около половины радиуса планеты давление в нем достигает 3 млн атмосфер, и водород уже не может существовать в молекулярном состоянии. Он становится металлическим, хотя и по-прежнему жидким. Течения в этом металлическом океане генерируют довольно сильное магнитное поле Сатурна. В центре планеты находится массивное ядро (до 20 земных масс) из камня, железа и, возможно... льда. Откуда взяться льду в центре Сатурна, где температура около 20 тыс. градусов? Ведь хорошо знакомая нам кристаллическая форма воды - обыкновенный лед - плавится уже при температуре 0 С при нормальном атмосферном давлении. Еще "нежнее" кристаллические формы аммиака, метана, углекислого газа, которые ученые также называют льдом. Например, твердая углекислота (сухой лед, используемый в различных эстрадных шоу) при нормальных условиях сразу же переходит в газообразное состояние, минуя жидкою стадию. Но одно и то же вещество может образовывать различные кристаллические решетки. В частности, науке известны кристаллические модификации воды, отличающиеся друг от друга не меньше, чем печная сажа - от химически тождественного ей алмаза. Например, так называемый лед VII имеет плотность, почти вдвое превосходящую плотность обычного льда, и при больших давлениях его можно нагревать до нескольких сот градусов! Поэтому не стоит удивляться тому, что в центре Сатурна при давлении в миллионы атмосфер присутствует лед, т.е. в данном случае смесь из кристаллов воды, метана и аммиака.

  • 256. Сборка замка убранного положения основной опоры шасси самолета Ту-204
    Другое Авиация, Астрономия, Космонавтика

    Сост. А.С.Горячев, Д.н. Лысенко - Куйбышев, 1986г.

    1. ГОСТ 2.105 - 79 основные требования по оформлению пояснительной записки.
    2. РД 40 РСФСР - 050 - 87 Проекты (работы) дипломные и курсовые. Правила оформления / Мв ИССО РСФСР - М.1988г.
    3. ГОСТ 2.109 - 73. Основные требования к чертежам - М.1975г.
    4. ГОСТ 2.307 -68. Нанесение размеров и предельных отклонений - М,1970г.
    5. ГОСТ 2.701 -84. Схемы. Виды и типы. Общие требования к выполнению - М: Изд. Стандартов,1984г.
    6. Гост 3.1404 - 86 Формы и правила оформления на технологические процессы и операции обработки металлов, резания.
    7. ГОСТ 14.301 - 83 Общие правила разработки и применения технологических процессов - М: изд. Стандартов,1986г.
    8. ГОСТ 3.1109 - 82. Процессы технологические. Термины и определения основных понятий - М : Изд. Стандартов, 1987г.
    9. П.М. Попов. ФСА конструкций оснастки для организации информационных баз данных САПР подготовки авиационного производства. М.У. к выполнению расчетно - графической работы по дисциплине «Автоматизированные системы подготовки производства. Ульяновск: 1998г 43стр.
    10. П.М. Попов Правила разработки тезауруса - информационного языка автоматизированных систем. Составление дескрипторного словаря функций авиационного производства. Ульяновск 1988г. 28 стр.
    11. Единство требований при подготовке и отчетности по лабораторным работам.
  • 257. Сверхновые звезды
    Другое Авиация, Астрономия, Космонавтика

    Когда исчерпаются запасы водорода, особенно в ядре звезды, ядро начинает сжиматься, ибо после прекращения ядерных реакций звезда теряет способность противостоять тяготению. Однако, сжимаясь, ядро разогревается еще больше, и в результате повышения температуры начинается следующий цикл ядерных реакций. В этих реакциях гелий превращается в углерод, затем углерод превращается в кислород и неон. На каждой ступени этой серии реакций образуются все более массивные атомные ядра. Каждое атомное ядро поглощает дополнительно по одному ядру атома гелия, при этом его заряд возрастает на 2, а массовое число на 4. Как только ядра очередного типа превращаются в более массивные ядра следующего типа, синтез прекращается. Это ведет к ослаблению противодействия силам тяготения, которые снова начинают сжимать ядро звезды, еще более повышая его температуру. Когда температура достаточно возрастает, начинаются ядерные реакции следующего цикла. И, пока они продолжаются, дальнейшее сжатие звезды приостанавливается. Эти реакции переводят атомные ядра еще на одну ступеньку выше, добавляя им по одному ядру атома гелия. При достаточно высоких температурах могут сливаться и более массивные ядра. Так и продолжается этот многоступенчатый процесс включения выключения ядерных реакций.

  • 258. Сильніше загроза - міцніше захист
    Другое Авиация, Астрономия, Космонавтика

    З розглянутих міжмережевих екранів нам найбільше сподобалися Sygate і ZoneAlarm. Sygate впачатляет швидкодією і модульної конфігурацією, завдяки якій його можна налаштовувати практично як завгодно. Щоправда, деякі його повідомлення здатні поставити в глухий кут, незважаючи на деталь. Як, наприклад, реагувати на таке попередження: "Internet Explorer (IEXPLORE.EXE) is trying to connect to (207.46.134.221) using remote port 80 (HTTP - World Wide Web)"? Навіть у перекладі на російську - "Internet Explorer (IEXPLORE.EXE) намагається з'єднатися з www.microsoft.com (207.46.134.221) через віддалений порт 80 (HTTP - World Wide Web)" не зовсім зрозуміло ... А ось повідомлення ZoneAlarm в тій же ситуації цілком ясно: "Do you want to allow Internet Explorer to access the Internet?" - "Чи дозволяєте ви доступ Internet Explorer до інтернету?".

  • 259. Система автоматического регулирования температуры газов в газотурбинном двигателе
    Другое Авиация, Астрономия, Космонавтика

    В данной работе рассматривается система автоматического регулирования температуры газов в газотурбинном двигателе самолета. КЗ, которое в данном случае является реальным дифференцирующим звеном, реагирует на поступающий сигнал от ОР и дифференцируя его во времени, прогнозирует изменение температуры, т.е., система реагирует на малейшее отклонение температуры от заданной, не допуская критического ее понижения. Затем сигнал из сумматора поступает на усилитель, а с него на исполнительный механизм, который выполняет

  • 260. Система преступлений и наказаний по Соборному Уложению 1649г
    Другое Авиация, Астрономия, Космонавтика

    Из преступлений, вводящих судебную власть в заблуждение и ведущих к неправильным решениям, лжеприсяга занимает в Московском праве высшее место. Понятие о ней, как о преступлении, не могло образоваться в 1-й период, когда присягали стороны и их послухи, прибегая к суду Божьему безапелляционному и не допускающему проверки. В XVI веке, когда послушество обратилось в простое свидетельское наказание, стало возможным принесение лживой присяги. В постановлениях Стоглава и Соборного Уложения она имеет двойственный объект, как преступление против религии и государственной судебной власти; в Уложении эта двойственность выразилась в противоречащих постановлениях двух глав кодекса (XIV и X); В одной из них выписывается постановление кормичей книги Василия Васильевича, в которых за лжеприсягу полагаются церковные епитимии (“два лета да плачется, три лета да послушает святого писания”). Напротив, в другой главе московский закон дает свое простое определение: “бить его кнутом по торгам, посадить его в тюрьму на год” и лишить права исков. Лжесвидетельство (без присяги) признано даже деянием преступным (Судебник 1550 г., статья 99). Уложение еще усиливает эти наказания (X. 162, XXI. 36). К тому же разряду относится ябедничество, которое в судебниках стоит в одной категории с убийством и разбоем (Судебник 1497г., статья 8; Судебник 1550 г., статья 59 добавляет сюда еще подписку). Субъектами этого преступления могли быть как сами истцы, так в особенности их поверенные; последние явились причиной создания указа от 12 марта 1582 года, в котором преступники этого разряда разделяются на ябедников, крамольников и составщиков (то есть лживых обвинителей в частном преступлении, и составителей лживых гражданских исков). Закон в некоторых из них применяет те же наказания, каким подвергся бы ложно обвиненный ими. Объект преступления ябедничества довольно сложный: кроме главного предмета (против судебной власти: “казнити смертью для того: в жалобнице и в суде не лай”), ябедничество имеет и другой объект права частных лиц, ложно обвиняемых: “а будет лаял кого…,а не докажет, чим лаял, ино его бив кнутьем, доправити безчестье без суда”. Особенный вид преступления того же порядка подмет поличного с целью обвинить невиновного в татьбе .