Информация по предмету Авиация, Астрономия, Космонавтика
-
- 161.
Новейшее достижение в освоении космоса
Другое Авиация, Астрономия, Космонавтика 9 февраля на космодроме Байконур прошла испытания система "Союз-Фрегат". Запуск комплекса стал первым этапом международной космической программы, в которой принимают участие "ЦСКБ-Прогресс" и ряд других самарских предприятий. Но все закончилось неожиданным конфузом: спускавшиеся на землю аппараты исчезли. Запуск ракетоносителя "Союз" с разгонным блоком "Фрегат" был осуществлен в рамках международной программы запуска зарубежного спутника научного назначения "Кластер". В ней, кроме "ЦСКБ-Прогресс", приняли участие Российское космическое агентство, НПО Лавочкина (разработчик РБ "Фрегат"), а также французская компания "Старсем". Самаре в этом проекте отводилась значительная роль, в частности, ЦСКБ провело модернизацию ракетоносителя "Союз" под установку на нем разгонного блока. Кроме того, в ЦСКБ и на базе аэрокосмического университета был, развернут информационный центр по приему и передаче информации с космодрома, телеметрии данных с ракеты на НПО Лавочкина и обратно в Самару. Разгонный блок "Фрегат" предназначен для доставки оборудования на заданную орбиту согласно проекту "Кластер-2". Имеющиеся сейчас ракетоносители "Союз" не отвечают требованиям Европейского космического агентства, в частности, орбита вывода ряда телекоммуникационных и научных спутников должна находиться в диапазоне от 1500 до 1800 км. Однако действующий ракетоноситель может доставлять оборудование массой порядка 7 тонн только на орбиту высотой 200-450 км. На большее трехступенчатому РН "Союз" не хватает сил. Исправить положение может использование четвертой ступени, которой и станет разгонный блок "Фрегат". После его срабатывания и отделения на заданной высоте РБ за несколько включений двигателя достигает новой орбиты. "Союз", адаптированный под использование разгонного блока "Фрегат", сможет выводить в космос широкую гамму недоступного ранее оборудования и спутников. На первом демонстрационном пуске отрабатывались задачи будущей марсианской программы (над ней работает НПО Лавочкина), а в качестве полезной нагрузки на разгонном блоке устанавливалась система мягкой посадки (надувное тормозное устройство диаметром 15 метров). По словам заместителя начальника проектно-теоретического отдела ЦСКБ Игоря Смирнова, разгонный блок "Фрегат" первоначально создавался для ракетоносителя "Союз-2" (улучшенного варианта имеющегося "Союза"), который должен был увеличить точность выведения грузов на орбиту и ее высоту. Однако из-за проблем с финансированием модернизация самого "Союза" затянется до 2001 года. Поэтому для "Фрегата" был выбран обычный ракетоноситель, на котором увеличили пространство под головным обтекателем с 3,3 до 3,7 метра. Были проведены аэродинамические испытания ракетоносителя, доработана система управления и элементы конструкции. Однако успешный запуск "Фрегата" обернулся неожиданным конфузом: во время спуска "Фрегат" и выведенный с его помощью на орбиту немецкий спутник исчезли. Их искали визуальным способом, т.к. расположенный на "Фрегате" радиобуй не подавал признаков жизни. Пропажа во время приземления вызвала неоднозначную реакцию у иностранных компаний, участвующих в этом проекте. Их отношение к дальнейшим совместным проектам с российскими космическими предприятиями будет напрямую зависеть от того, какую оценку получит процесс приземления системы. Геннадий АНШАКОВ, первый заместитель генерального директора, первый заместитель генерального конструктора ГП "ЦСКБ-Прогресс": - Несколько лет назад по заданию Российских государственных заказчиков в ЦСКБ приступили к разработке ракеты "Союз-2" в рамках программы опытно-конструкторских работ "Русь". Назрела необходимость улучшить энергетические возможности, прочностные характеристики ракетоносителя "Союз". До недавнего времени РКА использовало две ракеты: "Союз" и "Молния". Первую - для запуска спутников на околоземные орбиты, вторую - на высоко эллиптичные. Сегодня содержать две модификации ракет экономически невыгодно, поэтому трехступенчатый "Союз" модернизирован в четырехступенчатый. В качестве четвертого блока и выбран разгонный блок "Фрегат". Для ЦСКБ он наиболее перспективен, так как практически все задачи, которые раньше требовали связки "Молнии" и "Союза", теперь решает только "Союз". В результате успешного испытания к нашим изделиям проявили интерес, и есть заказы из питерского КБ "Арсенал", НПО прикладной механики Решетнева (разработчик телекоммуникационных систем). Есть ряд коммерческих предложений по линии "Старсем". На запуске присутствовали сотрудники Европейского космического агентства, выразившие свое восхищение результатом испытаний. Остаётся надеяться, что от впечатлений мы перейдем к конкретным делам, и в область пойдут заказы, что в целом положительно скажется на таких предприятиях, как "ЦСКБ-Прогресс", АО "Моторостроитель", "Самарский металлургический завод" и т.д.
- 161.
Новейшее достижение в освоении космоса
-
- 162.
О компании Airbus. Каталог самолетов
Другое Авиация, Астрономия, Космонавтика Самолет представляет собой модификацию исходной модели А300-600 с увеличенной дальностью полета. К его разработке консорциум "Эр-бас Индастри" приступил в 1985 г. Для увеличения дальности полета в горизонтальном оперении размещен дополнительный топливный бак емкостью 6150 л. С помощью этого бака и системы перекачки топлива возможно управление балансировкой самолета в полете (впервые подобная система была использована на самолете А310-300). Первый полет самолет A300-600R (с двигателями CF6-80C2A5) совершил 9 декабря 1987 г. В марте 1988 г. была завершена его сертификация в Европе и США. Первый самолет был поставлен в конце апреля 1988 г. американской авиакомпании "Америкой Эрлайнз". В конце сентября 1988 г. состоялся первый полет варианта с двигателями фирмы "Пратт-Уитни"; поставки начались в ноябре 1988г. В марте 1990 г. самолет A300-600R, оснащенный двигателями фирмы "Дженерал Электрик", был сертифицирован FAA на соответствие требованиям ETOPS к двухдвигательным магистральным самолетам, согласно которым самолет может выполнять в течение 180 мин полет до запасного аэродрома с одним работающим двигателем. На основе самолета A300-600R специально сформированной фирмой SATIC был разработан грузовой самолет A300-600ST "Белуга", предназначенный для перевозки крупногабаритных конструкций (секций фюзеляжа, консолей крыла, поверхностей оперения и двигателей) для пассажирских самолетов консорциума "Эрбас Индастри" с заводов-изготовителей во Францию на сборочный комплекс в Коломье (пригород Тулузы). Самолет отличается увеличенным (до 7,7 м) диаметром фюзеляжа и открывающимся вверх носовым обтекателем. На концах горизонтального оперения установлены две концевые "шайбы". В кабине самолета возможна перевозка грузов массой до 45 т на расстояние 2700 км. Максимальная платная нагрузка 50 т. В настоящее время в эксплуатации находятся два самолета A300-600ST; всего будет построено четыре.
- 162.
О компании Airbus. Каталог самолетов
-
- 163.
Облака
Другое Авиация, Астрономия, Космонавтика В одних районах облаков почти нет, а в других они закрывают небо круглый год. Такая неравномерность облачного покрова объясняется тем, что существуют мощные воздушные течения, проносящиеся над материками океанами. В одном месте эти воздушные течения насыщаются влагой, а в другом отдают ее, образуя облака, для появления которых воздух должен быть достаточно влажным. Кроме того для возникновения облаков воздух должен охладиться, либо поднимаясь вверх, либо перемешиваясь с более холодным воздухом. Если воздушные потоки поднимаются, приближаясь к горам, то в предгорьях и на горных склонах будет формироваться облачность, а там где воздух, наоборот, стекает с гор вниз, облаков почти не бывает.
- 163.
Облака
-
- 164.
Оборудование космических кораблей
Другое Авиация, Астрономия, Космонавтика Использование лазерных систем в космосе было однозначно более перспективным. При конструировании подобных систем было принято решение использовать лазеры с ядерной накачкой, так как они имели минимальный вес при максимальной скорости реагирования. Но с выбором подобной системы перед конструкторами встали новые проблемы даже самые совершенные системы стабилизации орбитальных платформ все равно давали миллиметровые дрожания при накачке лазера. В этом случае, если учитывать расстояние до Земли и рассеяние луча в атмосфере получалось бы километровое пятно излучения, дрожащее и перемещающееся от этого дрожания на десятки километров. В результате применения такого оружия температура в зоне поражения повысилась бы на 1-2 градуса Цельсия. Этого было явно недостаточно. Конструкторы западного блока спасовали перед этой трудностью, не сумев создать сколько-нибудь применимого лазерного оружия орбитального базирования. А вот конструкторы СССР сумели справиться с проблемой. Для этого вида оружия были разработаны специальные стабилизаторы. В их разработке, среди прочих, принимали участие и несколько выпускников МАИ. При помощи этих стабилизаторов стало возможно направление лазерного луча в ограниченную область, и температура в зоне поражения должна была возрастать на 200-400 градусов Цельсия. Воплощению в жизнь нового вида оружия помешало подписание соглашений ОСВ-1 и ОСВ-2.
- 164.
Оборудование космических кораблей
-
- 165.
Обработка поверхностей деталей летательных аппаратов
Другое Авиация, Астрономия, Космонавтика Алмазное выглаживание заключается в пластическом деформировании обрабатываемой поверхности скользящим по ней инструментом-выглаживателем, что позволяет получить упрочненную поверхность с низкой шероховатостью и сжимающими остаточными напряжениями, распространяющимися на значительную глубину. При этом в месте контакта инструмент-деталь (в очаге деформирования) происходит локальный переход металла в состояние текучести, в результате чего изменяются характеристики поверхностного слоя, что в итоге повышает сопротивление усталости деталей при эксплуатации.
- 165.
Обработка поверхностей деталей летательных аппаратов
-
- 166.
Общая теория относительности и способы ее подтверждения
Другое Авиация, Астрономия, Космонавтика Однако все эти блестящие догадки и прозрения были явно преждевременны. Создание современной теории тяготения было немыслимым без специальной теории относительности, без глубокого понимания структуры классической электродинамики, без осознания единства пространства-времени. Как уже отмечалось, ОТО была создана в основном усилиями одного человека. Путь Эйнштейна к построению этой теории был долгим и мучительным. Если его работа 1905 года «К электродинамике движущихся сред» появилась как бы сразу в законченном виде, оставляя вне поля зрения читателя длительные размышления, тяжелый труд автора, то с ОТО дело обстояло совершенно иначе. Эйнштейн начал работать над ней с 1907 года. Его путь к ОТО продолжался несколько лет. Это был путь проб и ошибок, который хотя бы отчасти можно проследить по публикациям Эйнштейна в эти годы. Окончательно задача была решена им в двух работах, доложенных на заседаниях Прусской Академии наук в Берлине 18 и 25 ноября 1915 года. В них были сформулированы уравнения гравитационного поля в пустоте и при наличии источников.
- 166.
Общая теория относительности и способы ее подтверждения
-
- 167.
Общие принципы ТЭА и выбора двигателя самолета
Другое Авиация, Астрономия, Космонавтика Рост тяги двигателя обеспечивается увеличением расходов воздуха, проходящего через двигателя в единицу времени (с), степени сжатия компрессора Пr* и температура газа перед турбиной Т*r . Одновременно эти параметры определяют (при прочих равных условиях) уровень удельных функциональных характеристик двигателя: с ростом П*r и Т*r увеличивается удельная тяга Рв и весовая отдача Рm, снижается расход топлива С на бесфорсажном режиме. Расход воздуха от которого при П*r, Т*r зависит тяга двигателя, определяется площадью кольцевого канала Frr , образующего газовоздушный тракт двигателя.
- 167.
Общие принципы ТЭА и выбора двигателя самолета
-
- 168.
Одиноки ли мы во Вселенной?
Другое Авиация, Астрономия, Космонавтика Жизнь на какой-нибудь планете должна проделать огромную эволюцию, прежде чем стать разумной. Движущая сила этой эволюции - способность организмов к мутациям и естественный отбор. В процессе такой эволюции организмы все более и более усложняются, а их части - специализируются. Усложнение идет как в качественном, так и в количественном направлении. Например, у червя имеется всего около 1000 нервных клеток, а у человека около десяти миллиардов. Развитие нервной системы существенно увеличивает способности организмов к адаптации, их пластичность. Эти свойства высокоразвитых организмов являются необходимыми, но, конечно, недостаточными для возникновения разума. Последний можно определить как адаптацию организмов для их сложного социального поведения. Возникновение разума должно быть теснейшим образом связано с коренным улучшением и усовершенствованием способов обмена информацией между отдельными особями. Поэтому для истории возникновения разумной жизни на Земле возникновение языка имело решающее значение. Можем ли мы, однако, такой процесс считать универсальным для эволюции жизни во всех уголках Вселенной? Скорее всего - нет! Ведь в принципе при совершенно других условиях средством обмена информацией между особями могли бы стать не продольные колебания атмосферы (или гидросферы), в которой живут эти особи, а нечто совершенно другое. Почему бы не представить себе способ обмена информацией, основанный не на акустических эффектах, а, скажем на оптических или магнитных? И вообще - так ли уж обязательно, чтобы жизнь на какой-нибудь планете в процессе ее эволюции стала разумной?
- 168.
Одиноки ли мы во Вселенной?
-
- 169.
Одни ли мы во вселенной
Другое Авиация, Астрономия, Космонавтика По данным американцев, полеты пришельцев наблюдали около 5% землян, то есть более 100 млн. человек; в архивах профессора Хайнека насчитывается более 100 000 описаний встреч с НЛО; на суде в Вашингтоне американские уфологи выяснили, что только ЦРУ располагало 10 000 страниц документов по этой проблеме. Во многих странах уже существуют общественные организации по изучению проблем НЛО (только в США их 25, в России - 2 основные и более сотни разрозненных групп, в мире более 500), издается большое количество журналов! 16 - в США, около 5 - в России, более 50 - в мире). В основном благодаря им, да еще неисчислимой армии любознательных и честных уфологов, мы и имеем большое количество открытой информации. Попытаемся подытожить собранные данные о тактико-технических характеристиках техногенных аппаратов пришельцев. Первое что бросается в глаза при знакомстве с описаниями очевидцев, это колоссальные скорости НЛО - в воздухе максимальная из официально зафиксированных - 200 000 км/час или 56 км/сек! Те же летательные аппараты в состоянии летать с самыми небольшими скоростями, зависать над одним местом, разгоняться или тормозить с чудовищно большими ускорениями (до тысячи g), для сравнения: тренировочные космонавты переносят 3-9g. Очевидцы часто наблюдали, как НЛО появляются "из ничего" , и исчезают в пустом воздухе, перемещаются скачками, а то и просто становятся невидимыми, оставаясь на одном месте. Многих до чрезвычайности удивляла картина полиморфизма, когда серебристые аппараты, внешне вроде бы даже покрытые металлом, вдруг меняют свою внешнюю форму и цвет, рассыпаются на части, восстанавливаются из осколков... Одним из бесспорных доказательств существования таинственных пришельцев являются так называемые "осколки НЛО", подобранные чаще всего на местах взрывов этих объектах. Самые известные например: "Вахшская находка" фрагмент какой-то толстой сферической оболочки диаметром 1,2 м; "Тульский образец" - 38-граммовый кусок проводника; оплавленные шарики с высоты 611 около Дальнегорска; "Волосы ангела" - тающие на воздухе осадки, выбрасываемые с летающих объектов в Краснодарском крае и Волгоградской области. Внешне разные, они все же позволяют получить представление о строении НЛО, и можно по фрагментам попытаться восстановить их облик. В частности, многое говорит за то, что аппараты пришельцев используют мощные электромагнитные поля для каких-то своих целей (возможно для создания тяги?). Но на это указывают остаточная сильная намагниченность, наличие в образцах тонких спиральных проводов(электромагнитов?), вкрапленных в диэлектрический материал, а также то, что магнитные свойства некоторых находок отличаются. Американские самолеты радиоэлектронной разведки не раз фиксировали излучения, идущие от летящих НЛО (чаще всего сообщается, что такое излучение имеет частоту 3000 МГц с повторением 600 импульсов/сек). Так как мощность этого излучения напрямую зависит от режима полета объекта, можно сделать вывод, что оно либо на прямую движет НЛО, либо является пробочным продуктом работы движения НЛО. Вот тут-то мы подошли к самому главному. Электромагнитная рабочая поверхность (ЭРП), создающая мощные электромагнитные поля оболочка - это же отличительная черта аппарата Машины Времени. Эксперименты показали, что внешние проявления упрощенных моделей Машины Времени почти полностью походили на то, что мы наблюдаем в случаях с НЛО. Уже упоминалось, что разомкнутая схема (эрп) (упрощенная оболочка Машины Времени) в состоянии создавать тягу, причем величина этой тяги в реальных аппаратах должна быть весьма значительной. Плавные, округлые очертания объекта объясняются тем, что любые острые углы препятствуют созданию вокруг корабля поля измененного Времени. Иллюминаторы на элипсоидах чаще всего не являются "окнами для обзора", это основной движитель объекта. Такой же, как "шары" на днищах НЛО. Вся разница между ними в количестве (шаров чаще всего бывает 3 штуки, реже - 4, 6 или 9) и мощности. Чем крупнее "иллюминаторы", тем они мощнее и тем меньше их требуется для создания тяги в летательном аппарате. Но даже самых крупных "иллюминаторов" (собственно, они уже превращаются в "шары") не может быть меньше трех, именно такое минимальное количество необходимо для стабилизации в полете. Количество "иллюминаторов" (в 1, 2, 3 или реже в 4 ряда) обычно исчисляются несколькими десятками, если же миниатюризировать их, то вся оболочка НЛО превращается в сплошной слой мини-двигателей, а еще точнее - весь корпус аппарата становится одним шародвигателем (летающий шар или эллипсоид). Подобные двигатели во время работы постоянно излучают электромагнитные волны, причем частота напрямую зависит от режима работы двигателей. При работе в ультрафиолетовом диапазоне они невидимы, в инфракрасном - их видят фотоаппараты. Нам же НЛО известны, конечно же, по свечению в видимом диапазоне. Но и в нем заметны некоторые изменения - достаточно, чтобы объект чуть ускорился, и цвет его резко меняется. При больших скоростях и значительных нагрузках шародвигатели выглядят ярко-голубыми или белыми, при незначительных - красными или оранжевыми. Во время полета НЛО применяет три режима полета: только во Времени, только в Пространстве (частота излучения двигателя при этом порядка тысяч МГц), одновременно во Времени и Пространстве. Каждый способ имеет свои цели и области применения, в частности, третий способ наиболее часто применяется при полетах над Землей. Из описанного следует, что по одному внешнему виду можно сделать предположения о месте старта данного НЛО и степени технического развития и пославшей его Цивилизации. - Тарелка с острыми углами, с "шарами" и "иллюминаторами" прилетает к нам с недалекого расстояния. Использовать такой корабль для межзвездных перелетов может только не слишком могущественная Цивилизация за неимением лучшей техники.
- 169.
Одни ли мы во вселенной
-
- 170.
ОК Буран
Другое Авиация, Астрономия, Космонавтика С.П.Королев считал парашютную посадку бесперспективной, и потому, по его заказу, параллельно с Востоком, лапоток проектировал П.В.Цыбин. Машина задумывалась классической аэродинамической схемы, с трапециевидным крылом и нормальным хвостовым оперением. Свое полуофициальное название аппарат получил из-за характерной формы фюзеляжа, в аэродинамическую тень которого несущие плоскости убирались при входе в плотные слои атмосферы. По способу выведения (на 3-ступенчатой Р-7, семерке), массе и решаемым задачам лапоток был бы аналогичным Востоку. (Справа - первый советский "челнок" - "лапоток" С.П.Королева и П.В.Цыбина: стартовая масса 4,7 т; экипаж 1 чел.; продолжительность полета до 27 ч; длина 9,4 м; размах крыла 5,5 м; высота по оперению 4 м; ширина фюзеляжа 3 м.) Рассматривалась даже возможность катапультирования космонавта непосредственно перед посадкой на ВПП. Однако быстро выяснился масштаб трудностей, встающих при создании крылатых космических аппаратов. Например, планирующий вход в атмосферу требовал точнейшей ориентации изделия, а соответствующие приборы появились значительно позже первых полетов... Кроме того, по теплозащите схема оказалась неоптимальной. После этого ракетчики к крылатым аппаратам охладели. С 1958-го воздушно-космический самолет (ВКС) проектировался в ОКБ-23 В.М.Мясищева. Масса та же под семерку. Схема уже бесхвостка, с треугольным крылом большой площади. Конкретный же облик неоднократно менялся, известно минимум три варианта. В последнем из них Владимир Михайлович впервые предложил применить керамическую плиточную теплозащиту, но... в 1960-м Мясищева отправили руководить ЦАГИ, ОКБ-23 стало филиалом фирмы В.Н.Челомея. Тогда же ракетопланами занялся и сам Владимир Николаевич, его ОКБ-52. Уже в 1961-м прошли испытательные пуски аппарата, названного МП-1 (первый пуск 21.03.1963 с использованием баллистической ракеты "Р-12"). 1,8-метровый конус массой 1,75 т, управлялся на гиперзвуковых скоростях восемью аэродинамическими щитками. Баллистическая ракета поднимала образец на 405 км, в атмосферу он входил в 1760 км от места старта со скоростью 3,8 км/с. Два года спустя испытания прошел М-12 такой же конус, но с четырьмя стабилизаторами. По результатам этих пусков ОКБ-52 представило проект 6,3-тонного беспилотного ракетоплана Р-1, оснащенного М-образным складным (средняя часть вверх, концы вниз) крылом переменной стреловидности, и его пилотируемого варианта Р-2. Перегрузка на спуске должна была составить всего 3,5-4 g, в отличие от 9-11 g на СА Восток. Сделали уже макеты машин, но после снятия благоволившего к Челомею Н.С.Хрущева воздушно-космическую тематику у ОКБ-52 отобрали. Занимался крылатыми кораблями и А.Н.Туполев, но пока о них известно крайне мало: опытный экземпляр беспилотного ВКС 130 был построен, а его пилотируемый вариант 136 должен был называться Красная звезда.
- 170.
ОК Буран
-
- 171.
Околополярные созвездия
Другое Авиация, Астрономия, Космонавтика В созвездии Лебедя недалеко от звезды h впервые была обнаружена черная дыра - объект, который будоражит умы астрономов и физиков вот уже свыше 200 лет. На существование черных дыр (правда, тогда их так не называли) одним из первых указал еще в XVIIIв. Лаплас. Свои рассуждения он основывал на законе всемирного тяготения. Действительно, мы знаем, что для того, чтобы космический аппарат или какое-либо другое тело навсегда покинуло Землю, ему необходимо сообщить вторую космическую скорость (астрономы называют ее параболической), равную 11,2км/с. При меньшей скорости тело упадет на Землю или станет ее спутником. Чтобы улететь с Юпитера, телу нужно сообщить параболическую скорость, равную уже 60,4км/с, с Солнца - около 600км/с. А представьте себе небесное тело, покинуть которое можно лишь имея параболическую скорость, не меньшую скорости света, т.е. 300000км/с. Поскольку ничто в природе не может двигаться со скоростью, большей скорости света, такое небесное тело будет все в себя втягивать и ничего не будет выпускать, даже свет. Получается нечто вроде дыры в космосе. Так как такие черные дыры не светятся, никто не ожидал их увидеть на небе при телескопических наблюдениях. Однако в начале 70-х гг., когда в космос запустили рентгеновский телескоп, астрономы увидели излучение небесных тел в диапазоне волн, не доступном для наблюдений с поверхности Земли из-за сильного поглощения в атмосфере. С помощью такого телескопа недалеко от Лебедя и был замечен странный быстропеременный рентгеновский источник Лебедь Х-1. Х - обозначение рентгеновских, или Х-лучей. Как оказалось, он обращается с периодом около 5,6 суток вокруг обычной очень массивной и горячей звезды. Быстрая переменность указывала на очень маленькие размеры источника (менее 1000 км). Звезды с такими размерами науке не известны. Наблюдения оптического излучения главной звезды показали периодические (с тем же периодом) смещения ее спектральных линий, благодаря чему удалось оценить массу невидимого рентгеновского источника, которая оказалась в 10 раз больше солнечной массы. Первое предположение, что этот загадочный объект является нейтронной звездой, сразу было отвергнуто, так как нейтронные звезды имеют массы не более нескольких солнечных масс. Ученые пришли к выводу, что рентгеновские лучи излучает черная дыра, радиус которой всего около 30 км. Но ведь черная дыра сама ничего излучать не может. Как же тут быть с рентгеновским излучением? Как показали исследования, благодаря тому, что черная дыра обращается вокруг гигантской горячей обычной звезды, она своим притяжением как бы перетягивают ее вещество. Это вещество, перед тем как упасть и исчезнуть в черной дыре, образует вокруг нее очень горячий, нагретый до миллионов градусов диск, рентгеновское излучение которого мы и наблюдаем. Сам диск по форме напоминает кольцо вокруг планеты Сатурн. Теперь нам нетрудно представить строение объекта Лебедь Х-1: яркая горячая звезда радиусом в несколько миллионов километров, а вокруг нее с огромной скоростью обращается черная дыра радиусом около 30 км, окруженная диском из горячего вещества, вытянутого из главной звезды.
- 171.
Околополярные созвездия
-
- 172.
Описание систем управления беспилотными летательными аппаратами
Другое Авиация, Астрономия, Космонавтика В 1898 г. Никола Тесла разработал и продемонстрировал миниатюрное радиоуправляемое судно. В 1910 г., вдохновлённый успехами братьев Райт, молодой американский военный инженер из Огайо Чарльз Кеттеринг предложил использовать летательные аппараты без человека. По его замыслу управляемое часовым механизмом устройство в заданном месте должно было сбрасывать крылья и падать как бомба на врага. Получив финансирование армии США, он построил, и с переменным успехом испытал несколько устройств, получивших названия The Kattering Aerial Torpedo, Kettering Bug (или просто Bug), но в боевых действиях они так и не применялись. В 1933 г. в Великобритании разработан первый БПЛА многократного использования Queen Bee. Были использованы три отреставрированных биплана Fairy Queen, дистанционно управляемые с судна по радио. Два из них потерпели аварию, а третий совершил успешный полёт, сделав Великобританию первой страной, извлёкшей пользу из БПЛА. Эта радиоуправляемая беспилотная мишень под названием DH82A Tiger Moth использовалась на королевском Военно-морском флоте с 1934 по 1943 г. Армия и ВМФ США с 1940 года использовали ДПЛА Radioplane OQ-2 в качестве самолёта-мишени. На несколько десятков лет опередили своё время исследования немецких учёных, давших миру на протяжении 40-х годов реактивный двигатель и крылатую ракету. Практически до конца восьмидесятых, каждая удачная конструкция БПЛА «от крылатой ракеты» представляла собой разработку на базе «Фау-1», а «от самолёта» «Фокке-Вульф» Fw 189. Ракета Фау-1 была первым применявшимся в реальных боевых действиях беспилотным летательным аппаратом. В течение второй мировой войны немецкие учёные вели разработки нескольких радиоуправляемых типов оружия, включая управляемые бомбы Henschel Hs 293 и Fritz X, ракету Enzian и радиоуправляемый самолёт, заполненный взрывчатым веществом. Несмотря на незавершённость проектов, Fritz X и Hs 293 использовались на Средиземном море против бронированных военных кораблей. Менее сложным и созданным скорее с политическими, чем с военными целями самолёт V1 Buzz Bomb с реактивным пульсирующим двигателем, который мог запускаться как с земли, так и с воздуха. В СССР в 19301940 гг. авиаконструктором Никитиным разрабатывался торпедоносец-планер специального назначения (ПСН-1 и ПСН-2) типа «летающее крыло» в двух вариантах: пилотируемый тренировочно-пристрелочный и беспилотный с полной автоматикой. К началу 1940 г. был представлен проект беспилотной летающей торпеды с дальностью полёта от 100 км и выше (при скорости полёта 700 км/ч). Однако этим разработкам не было суждено воплотится в реальные конструкции. В 1941 году были удачные применения тяжёлых бомбардировщиков ТБ-3 в качестве БПЛА для уничтожения мостов. Во время второй мировой войны ВМС США для нанесения ударов по базам германских подводных лодок пытались использовать дистанционно пилотируемые системы палубного базирования на базе самолёта B-17. После второй мировой войны в США продолжились разработки некоторых видов БПЛА. Во время войны в Корее для уничтожения мостов успешно применялась радиоуправляемая бомба Tarzon. 23 сентября 1957 г. КБ Туполева получил госзаказ на разработку мобильной ядерной сверхзвуковой крылатой ракеты среднего радиуса действия. Первый взлёт модели Ту-121 был осуществлён 25 августа 1960 г., но программа была закрыта в пользу Баллистических ракет КБ Королёва. Созданная же конструкция нашла применение в качестве мишени, а также при создании беспилотных самолётов разведчиков Ту-123 «Ястреб», Ту-143 «Рейс» и Ту-141 «Стриж», стоявших на вооружении ВВС СССР с 1964 по 1979 г. Ту-143 «Рейс» на протяжении 70-х годов поставлялся в африканские и ближневосточные страны, в том числе и в Ирак. Ту-141 «Стриж» состоит на вооружении ВВС Украины и поныне. Комплексы «Рейс» с БРЛА Ту-143 эксплуатируются до настоящего времени, поставлялись в Чехословакию (1984 г.), Румынию, Ирак и Сирию (1982 г.), использовались в боевых действиях во время Ливанской войны. В Чехословакии в 1984 г. были сформированы две эскадрильи, одна из которых в настоящее время находиться в Чехии, другая - в Словакии. В начале 1960-х годов дистанционно-пилотируемые летательные аппараты использовались США для слежения за ракетными разработками в Советском Союзе и на Кубе. После того, как были сбиты RB-47 и два U-2, для выполнения разведывательных работ была начата разработка высотного беспилотного разведчика Red Wadon (модель 136). БПЛА имел высоко расположенные крылья и малую радиолокационную и инфракрасную заметность. Во время войны во Вьетнаме с ростом потерь американской авиации от ракет вьетнамских ЗРК возросло использование БПЛА. В основном они использовались для ведения фоторазведки, иногда для целей РЭБ. В частности, для ведения радиотехнической разведки применялись БПЛА 147E. Несмотря на то что, в конечном счёте, он был сбит, беспилотник передавал на наземный пункт характеристики вьетнамского ЗРК C75 в течение всего своего полёта. Ценность этой информации была соизмерима с полной стоимостью программы разработки беспилотного летательного аппарата. Она также позволила сохранить жизнь многим американским лётчикам, а также самолёты в течение последующих 15 лет, вплоть до 1973 г. В ходе войны американские БПЛА совершили почти 3500 полётов, причём потери составили около четырёх процентов. Аппараты применялись для ведения фоторазведки, ретрансляции сигнала, разведки радиоэлектронных средств, РЭБ и в качестве ложных целей для усложнения воздушной обстановки. Но полная программа БПЛА была окутана тайной настолько, что её успех, который должен был стимулировать развитие БПЛА после конца военных действий, в значительной степени остался незамеченным. Беспилотные летательные аппараты применялись Израилем во время арабо-израильского конфликта в 1973 г. Они использовались для наблюдений и разведки, а также в качестве ложных целей. В 1982 г. БПЛА использовались во время боевых действий в долине Бекаа в Ливане. Израильский БПЛА AI Scout и малоразмерные дистанционно-пилотируемые летательные аппараты Mastiff провели разведку и наблюдение сирийских аэродромов, позиций ЗРК и передвижений войск. По информации, получаемой с помощью БПЛА, отвлекающая группа израильской авиации перед ударом главных сил вызвала включение радиолокационных станций сирийских ЗРК, по которым был нанесён удар с помощью самонаводящихся противорадиолокационных ракет, а те средства, которые не были уничтожены, были подавлены помехами. Успех израильской авиации был впечатляющим Сирия потеряла 18 батарей ЗРК. СССР ещё в 70-е80-е годы был лидером по производству БПЛА, только Ту-143 было выпущено около 950 штук. Дистанционно-пилотируемые летательные аппараты и автономные БПЛА использовались обеими сторонами в течение войны в Персидском заливе 1991 г., прежде всего как платформы наблюдения и разведки. США, Англия, и Франция развернули и эффективно использовали системы типа Pioneer, Pointer, Exdrone, Midge, Alpilles Mart, CL-89. Ирак использовал Al Yamamah, Makareb-1000, Sahreb-1 и Sahreb-2. Во время операции «Буря в пустыне» БПЛА тактической разведки коалиции совершили более 530 вылетов, налёт составил около 1700 часов. При этом 28 аппаратов были повреждены, включая 12, которые были сбиты. Из 40 БПЛА Pioneer, используемых США, 60 процентов были повреждены, но 75 процентов оказались ремонтопригодными. Из всех потерянных БПЛА только 2 относились к боевым потерям. Низкий коэффициент потерь обусловлен вероятнее всего небольшими размерами БПЛА, в силу чего иракская армия сочла что они не представляют большой угрозы. БПЛА также использовались и в операциях по поддержанию мира силами ООН в бывшей Югославии. В 1992 г. Организация Объединённых Наций санкционировала использование военно-воздушных сил НАТО, чтобы обеспечить прикрытие Боснии с воздуха, поддерживать наземные войска, размещённые по всей стране. Для выполнения этой задачи требовалось ведение круглосуточной разведки.
- 172.
Описание систем управления беспилотными летательными аппаратами
-
- 173.
Определение энергетического потенциала РЛ ИП
Другое Авиация, Астрономия, Космонавтика и коэффициент усиления (направленного действия) антенны ;
- максимальную дальность РЛ ИП без учёта затухания в атмосфере, а также
- в условиях дождя с различной интенсивностью, облаков и тумана с различной водностью по целям с различной эффективной отражающей поверхностью (ЭОП).
- Построить соответствующие графики.
- 173.
Определение энергетического потенциала РЛ ИП
-
- 174.
Орбитальные станции
Другое Авиация, Астрономия, Космонавтика В процессе работ проект непрерывно уточнялся. Принимались новые решения, направленные на расширение задач станции и упрощение некоторых проблем по кооперации. Бортовой цифровой вычислительный комплекс "Аргон-20" заменили на двухмашинный БЦВК на базе "Аргона-16" и "Салюта-5Б" разработки НИИ ЦЭВТ (В.В. Пржиялковский), НПО "Элас" (Г.Я. Гуськов). Системы станции были модернизированы: система управления на базе БЦВМ значительно расширяла возможности станции и позволяла перепрограммирование с Земли, новая система сближения "Курс" не требовала разворотов станции при сближении, система энергопитания имела существенно увеличенную мощность и регулирование уровня напряжения в узком диапазоне, вместо громоздких регенераторов атмосферного воздуха установили систему электролиза воды ("Электрон") для снабжения кислородом и регенерируемую систему поглощения углекислого газа ("Воздух"), система управления бортовым комплексом использовала БЦВМ и современные алгоритмы управления. Была введена радиосистема "Антарес" с остронаправленной антенной для связи через спутник-ретранслятор.
Работы в НПО "Энергия" и КБ "Салют" продолжались. Оперативное управление требовало значительных усилий со стороны главного конструктора направления - заместителя генерального конструктора Ю.П. Семенова - по увязке и технической координации решений, связанных со своевременным изготовлением вновь вводимых систем. Несмотря на изменения проекта, конструкторская документация на базовый блок, выпускаемая совместно с КБ "Салют", передана в 1982-1983 гг. на ЗИХ (А.И. Киселев) и ЗЭМ (А.А. Борисенко).
- 174.
Орбитальные станции
-
- 175.
Орбитальный комплекс "Буран"
Другое Авиация, Астрономия, Космонавтика С.П.Королев считал парашютную посадку бесперспективной, и потому, по его заказу, параллельно с Востоком, лапоток проектировал П.В.Цыбин. Машина задумывалась классической аэродинамической схемы, с трапециевидным крылом и нормальным хвостовым оперением. Свое полуофициальное название аппарат получил из-за характерной формы фюзеляжа, в аэродинамическую тень которого несущие плоскости убирались при входе в плотные слои атмосферы. По способу выведения (на 3-ступенчатой Р-7, семерке), массе и решаемым задачам лапоток был бы аналогичным Востоку. (Справа - первый советский "челнок" - "лапоток" С.П.Королева и П.В.Цыбина: стартовая масса 4,7 т; экипаж 1 чел.; продолжительность полета до 27 ч; длина 9,4 м; размах крыла 5,5 м; высота по оперению 4 м; ширина фюзеляжа 3 м.) Рассматривалась даже возможность катапультирования космонавта непосредственно перед посадкой на ВПП. Однако быстро выяснился масштаб трудностей, встающих при создании крылатых космических аппаратов. Например, планирующий вход в атмосферу требовал точнейшей ориентации изделия, а соответствующие приборы появились значительно позже первых полетов... Кроме того, по теплозащите схема оказалась неоптимальной. После этого ракетчики к крылатым аппаратам охладели. С 1958-го воздушно-космический самолет (ВКС) проектировался в ОКБ-23 В.М.Мясищева. Масса та же под семерку. Схема уже бесхвостка, с треугольным крылом большой площади. Конкретный же облик неоднократно менялся, известно минимум три варианта. В последнем из них Владимир Михайлович впервые предложил применить керамическую плиточную теплозащиту, но... в 1960-м Мясищева отправили руководить ЦАГИ, ОКБ-23 стало филиалом фирмы В.Н.Челомея. Тогда же ракетопланами занялся и сам Владимир Николаевич, его ОКБ-52. Уже в 1961-м прошли испытательные пуски аппарата, названного МП-1 (первый пуск 21.03.1963 с использованием баллистической ракеты "Р-12"). 1,8-метровый конус массой 1,75 т, управлялся на гиперзвуковых скоростях восемью аэродинамическими щитками. Баллистическая ракета поднимала образец на 405 км, в атмосферу он входил в 1760 км от места старта со скоростью 3,8 км/с. Два года спустя испытания прошел М-12 такой же конус, но с четырьмя стабилизаторами. По результатам этих пусков ОКБ-52 представило проект 6,3-тонного беспилотного ракетоплана Р-1, оснащенного М-образным складным (средняя часть вверх, концы вниз) крылом переменной стреловидности, и его пилотируемого варианта Р-2. Перегрузка на спуске должна была составить всего 3,5-4 g, в отличие от 9-11 g на СА Восток. Сделали уже макеты машин, но после снятия благоволившего к Челомею Н.С.Хрущева воздушно-космическую тематику у ОКБ-52 отобрали. Занимался крылатыми кораблями и А.Н.Туполев, но пока о них известно крайне мало: опытный экземпляр беспилотного ВКС 130 был построен, а его пилотируемый вариант 136 должен был называться Красная звезда.
- 175.
Орбитальный комплекс "Буран"
-
- 176.
Орбитальный телескоп Хаббл
Другое Авиация, Астрономия, Космонавтика В отличие от других научных проектов, HST не используется исключительно отдельной группой специалистов, разработавших данный телескоп, или группой астрономов из одной лаборатории или института; в принципе, любой человек может провести свое наблюдение при помощи HST.
Для проведения наблюдений с помощью HST , астроном должен прислать в STSiC запрос с изложением научного обоснования невозможности проведения данного наблюдения в земных условиях и описание предполагаемой программы наблюдений. Запрос передается в одну из комиссий при STSiC по разным разделам астрономии. Каждый год эти комиссии предоставляют ранжированные списки с предложениями по проведению наблюдений в Комитет Распределения Времени исследований с помощью телескопа (Telescope Allocation Committee - TAC). Задача комитета - составить проект сбалансированной программы наблюдений для HST. Последнее слово в утверждении этой программы принадлежит главе STScI.
На каждом этапе рассмотрения проект оценивается по разным критериям. Какова научная ценность знаний, которые будут получены в результате исследований, и сколько средств и времени для этого необходимо истратить? Достигнуты ли пределы в исследовании данного объекта наземными приборами? Насколько вероятен успех исследований?
Кроме чисто научных вопросов, проверяется также физическая возможность HST наблюдать данный объект/явление, временные и другие требования к телескопу и его ресурсам.
Компьютеризированные наблюдения в космический век.
- 176.
Орбитальный телескоп Хаббл
-
- 177.
Организация и проведение актинометрических наблюдений во время солнечного затмения
Другое Авиация, Астрономия, Космонавтика Обычное определение характеристик прозрачности атмосферы перед началом затмения и после его окончания не даёт ответа на вопрос, как менялась прозрачность во время самого затмения. Но изменения прозрачности можно обнаружить по изменениям спектрального состава радиации. Правда, он меняется в течение дня и при неизменной прозрачности в результате изменения длины пути солнечных лучей в атмосфере (чем ближе к горизонту Солнце, тем большей относительной энергией в спектре обладают лучи длинных волн - красные и инфракрасные). Но этот дневной ход получается очень правильным и плавным, и влияние его легко исключить. Оставшиеся неисключёнными изменения спектрального состава будут свидетельствовать о наличии в атмосфере процессов, изменяющих её прозрачность. Так, уменьшение количества водяных паров в воздухе уменьшает поглощение радиации в длинноволновой части спектра и повышает долю этой части спектра в общем потоке солнечной радиации. Такое же действие должно оказывать уменьшение размеров и числа частиц конденсационной мутности, сильно рассеивающих длинноволновую радиацию. Процессы, идущие в противоположном направлении, должны приводить к относительному повышению энергии коротковолновой радиации.
- 177.
Организация и проведение актинометрических наблюдений во время солнечного затмения
-
- 178.
Освоение человеком космоса
Другое Авиация, Астрономия, Космонавтика «Луна-3» должна была оказаться над обратной стороны Луны, а система ориентации должна была развернуть контейнер так, чтобы его фотоаппараты были направлены на Луну. Для этого по команде с Земли весь контейнер привели во вращение, и, когда в фотоэлементы, расположенные на нижнем днище контейнера, попали яркие лучи Солнца, вызванный ими в этих фотоэлементах ток послужил сигналом, по которому контейнер прекратил вращение и, остановившись, как завороженный, стал смотреть на Солнце. (От слабого отраженного света Земли и Луны фотоэлементы - датчики солнечной ориентации - сработать не могли.) Фотоаппараты и лунные датчики, расположенные на противоположном верхнем днище контейнера, оказались смотрящими в сторону Луны. В начале работы выбрали такое взаимное расположение Земли Луны и Солнца, при котором Земля была в стороне от линии, соединяющей Луну и Солнце. Поэтому Земля - светило значительно более яркое, чем Луна,- не могла попасть в объективы датчиков лунной ориентации, так как находилась в другом секторе неба.
- 178.
Освоение человеком космоса
-
- 179.
Основні характеристики зірок. Народження зірок
Другое Авиация, Астрономия, Космонавтика Значення газово-пилових комплексів в сучасній астрофізиці дуже велике. Річ у тому, що вже давно астрономи, в значній мірі інтуїтивно, зв'язували утворення конденсації в міжзоряному середовищі з найважливішим процесом утворення зірок з "дифузного" порівняно розрядженого газово-пилового середовища. Які ж підстави існують для припущення про зв'язок між газово-пиловими комплексами і процесом зіркоутворення? Перш за все слід підкреслити, що вже принаймні з сорокових років нашого сторіччя астрономам ясно, що зірки в Галактиці повинні безперервно (тобто буквально "на наших очах") утворюватися з якоїсь якісно іншій субстанції. Річ у тому, що до 1939 року було встановлено, що джерелом зоряної енергії є той, що відбувається в надрах зірок термоядерний синтез. Грубо кажучи, що пригнічують більшість зірок випромінюють тому, що в їх надрах чотири протони з'єднуються через ряд проміжних етапів в одну альфа-частку. Оскільки маса одного протона (у атомних одиницях) рівна 1,0081, а маса ядра гелію (альфа-частки) рівна 4,0039, то надлишок маси, рівний 0,007 атомної одиниці на протон, повинен виділитися як енергія. Тим самим визначається запас ядерної енергії в зірці, яка постійно витрачається на випромінювання. У найсприятливішому випадку чисто водневої зірки запасу ядерної енергії вистачить не більш, ніж на 100 мільйонів років, тоді як в реальних умовах еволюції час життя зірки виявляється на порядок менше цієї явно завищеної оцінки. Але десяток мільйонів років - нікчемний термін для еволюції нашій Галактики, вік якої ніяк не менше ніж 10 мільярдів років. Вік масивних зірок вже порівняємо з віком людства на Землі! Означає зірки (принаймні, масивні з високою світимістю) ніяк не можуть бути в Галактиці "спочатку", тобто з моменту її освіти. Виявляється, що щорічно в Галактиці "вмирає" щонайменше одна зірка. Значить, для того, щоб "зоряне плем'я" не "звиродніло", необхідно, щоб стільки ж зірок в середньому утворювалося в нашій Галактиці щороку. Для того, щоб в перебігу тривалого часу (обчислюваними мільярдами років) Галактика зберігала б незмінними свої основні особливості (наприклад, розподіл зірок по класах, або, що практично одне і теж, по спектральних класах), необхідно, щоб в ній автоматично підтримувалася динамічна рівновага між зірками, що народжувалися і "гинучими". В цьому відношенні Галактика схожа на первісний ліс, що складається з дерев різних видів і віків, причому вік дерев значно менше віку лісу. Є, правда, одна важлива відмінність між Галактикою і лісом. У Галактиці час життя зірок з масою менше сонячною перевищує її вік. Тому слід чекати поступового збільшення числа зірок з порівняно невеликою масою, оскільки вони поки що "не встигли" померти, а народжуватися продовжують. Але для масивніших зірок згадана вище динамічна рівновага неминуче повинна виконуватися.
- 179.
Основні характеристики зірок. Народження зірок
-
- 180.
Основные звездные характеристики. Рождение звезд
Другое Авиация, Астрономия, Космонавтика
- 180.
Основные звездные характеристики. Рождение звезд