Информация по предмету Авиация, Астрономия, Космонавтика
-
- 101.
Классификация звезд
Другое Авиация, Астрономия, Космонавтика В глубокой древности видимые простым глазом звезды по своему блеску были разделены на шесть классов, названных величинами. Самые яркие звёзды были названы звездами l-й величины, самые слабые, ещё доступные простому глазу, находящиеся на границе видимости, были названы звездами 6-й величины. Промежуточные между этими крайними величинами получили название звезд 2-й, 3-й, 4-й и 5-й величин в порядке убывания их видимого блеска (m). Букву m при обозначении звёздной величины принято писать в виде показателя степени при числовом значении величины: например, звезда 3-й величины записывается так: 3m. Из изложенного видно, что «величина» не имеет ничего общего с действительной величиной звезд и представляет просто фотометрическую характеристику блеска звезды. Чем больше звездная величина звезды, тем слабее её блеск, тем труднее её видеть. Было принято, что разность в 5 звездных величин соответствует отличию в видимой яркости ровно в 100 раз, из этого следует, что блеск звезды изменяется всегда в одном и том же отношении при изменении звездной величины на единицу (а=2,5). Измерение блеска легло в основу шкалы звездных величин.
- 101.
Классификация звезд
-
- 102.
Классификация туманностей
Другое Авиация, Астрономия, Космонавтика Туманности - это небесные объекты, которые в отличие от звезд выглядят как пятна. Наиболее яркие из них видны невооруженным глазом (туманность Андромеда и туманность Ориона). В 1774 году, француз Мессье, занимавшийся, впрочем, исследованием комет, которые по внешнему виду напоминают туманности, выпустил первый каталог туманностей, созданный лишь. дабы облегчить Мессье открытие новых предметов своего интереса. Большинство туманностей этого кагалога были открыты самим Мессье. В каталоге были собраны все виды и классы туманностей, но классифицированы они не были. Ниже будет приведен вариант современной классификации туманностей.
- 102.
Классификация туманностей
-
- 103.
Комета C/2007 N3 (Lulin)
Другое Авиация, Астрономия, Космонавтика За все время, проведенное в Малой Академии Наук, мне удалось пронаблюдать, сфотографировать и изучить несколько комет. По двум из них, самым ярким и знаменитым я написал работы. Это были комета 73Р Швассмана-Вахмана 3, которая в 2006 году распалась на множество фрагментов, подобно комете Шумейкеров-Леви 9, и выдающаяся комета 2007 года 17Р Holmes, внезапно вспыхнувшая и, тем самым, повысившая свою яркость более, чем в 400 000 раз. Все эти работы были основаны на живых фотографиях этих комет. Однако, в прошедший год меня постигла неудача и единственная, хоть как-то проявившая себя комета, на которую я возлагал большие надежды в написании будущей работы, пролетела в самый дождливый период, дав возможность в редких проявлениях между тучами запечатлеть комету С/2007 N3 Lulin на пленку всего 5 раз за 2 ночи наблюдений. Но, я не стал искать новую тему для будущего творческого взноса, потому, что меня очень заинтересовало очень быстрое движение этой кометы по звездному небу. Я решил узнать, откуда такая скорость передвижения и как она связана с орбитой кометы? Для этого я попытался сам рассчитать элементы ее орбиты, начертить саму орбиту, а также, по возможности, сделать другие вычисления, исходя из 5 фотографий кометы Лулина.
- 103.
Комета C/2007 N3 (Lulin)
-
- 104.
Кометы и их природа
Другое Авиация, Астрономия, Космонавтика В эпоху, когда астрономия как наука переживала период своего становления, люди изучали небо невооруженным глазом. Поэтому все открываемые в ту пору «хвостатые звезды» были довольно яркими. Когда на помощь астрономам пришел телескоп (с XVII века), кометы стали открывать чаще. Сначала далекие, слабые кометы обнаруживали случайно, при наблюдении других небесных объектов. Потом появились астрономы, упорно обшаривавшие небо в поисках чего-то нового. Через десятки лет на счету таких наблюдателей оказывалось по 5-10, а иногда и больше открытых ими комет. А после того как телескопы стали доступны большому кругу людей, увлекающихся астрономией, появилась целая армия «охотников за кометами» бескорыстных и преданных сподвижников науки. Эти любители астрономии внесли огромный вклад в науку о кометах. Так, Ж. Понс, всю свою жизнь прослуживший сторожем на Марсельской обсерватории, открыл за тридцать лет 26 комет (его рекорд держался 165 лет!).
- 104.
Кометы и их природа
-
- 105.
Кометы и их свойства
Другое Авиация, Астрономия, Космонавтика Кометы относятся к группе малых тел, куда входят также астероиды, метеориты, метеорные рои и облака межпланетной пыли. Солнечная система состоит из одной звезды, девяти планет, три из которых имеют системы колец (Сатурн, Уран, Юпитер), почти сорока спутников малых планет с размерами от сотен метров до сотен километров. Астероиды, кометы и метеорные тела объединяют под одним названием «малые тела Солнечной системы». В отличии от других малых тел, кометы обладают удивительной способностью из сравнительно небольших по размерам ядер развивать атмосферы, превосходящие по своей протяженности все известные объекты Солнечной системы, включая и само Солнце. При этом протяженные атмосферы наблюдаются у комет в течении довольно длительного периода иногда в течении нескольких лет. Это главное свойство кометного ядра непрерывно возобновлять и поддерживать в огромном объеме газово-пылевую атмосферу. Название «комета» происходит от греческого слова «кометис», что в переводе на русский язык означает «волосатый». Кометы появились неожиданно в разных частях неба, и эти появления не имели каких-либо закономерностей, как, например, движение планет и Луны. Поэтому вслед за величайшим философом древности Аристотелем их стали считать атмосферными испарениями, поднимающимся в зону огня и там воспламеняющимся в виде огненных факелов. Однако не все ученые разделяли мысль Аристотеля о кометах. Одним из наиболее здравомыслящих в вопросе о природе комет был римский философ Сенека. Еще в I в.н.э. он высказывал удивительные мысли о кометах, которые полностью подтвердились через 15-16 веков. Как объектом научного исследования и начал тщательно и регулярно наблюдать все появлявшиеся и видимые невооруженным глазом светила. Он первым описал траекторию, по которой двигалась комета в 1472 г. отмечая каждый день ее положение относительно звезд и направление хвоста. К сожалению, Ремамонтан прожил только 40 лет и не довел свои исследования до конца. В XVI веке астроном Апиан, наблюдая за кометой 1531г. пришел к выводу, что хвост ее всегда направлен в противоположную от Солнца сторону. Однако он не понял, что причиной такой ориентации хвоста кометы является само Солнце. И вот, наконец, решил изучать движение комет самый искусный наблюдатель средневековья Тихо Браге. Чтобы определить расстояние до кометы 1577 г. он предложил проводить одновременные наблюдения из двух удаленных друг от друга обсерватории. Он сам наблюдал в Гельсинбурге, а его ученики следили за той же самой кометой в Уранибурге. Сопоставив эти наблюдения Тихо Браге определил, что комета находиться значительно дальше Луны, так как и параллакс, т.е. смещение относительно звезд при наблюдении из двух различных точек на земной поверхности, оказался значительно дальше Луны, т.к. ее меньше лунного. Наблюдения Тихо Браге и его учеников доказывали, что кометы не могут быть испарениями Земли и других планет, а являются самостоятельными телами, которые нужно изучать, чтобы понять их природу и происхождение.
- 105.
Кометы и их свойства
-
- 106.
Кометы и метеоры
Другое Авиация, Астрономия, Космонавтика Согласно классификации, разработанной во второй половине 19 в. Ф. А. Бредихиным, хвосты комет подразделяются на 3 типа: хвосты 1-го типа направлены прямо от Солнца, хвосты 2-го типа изогнуты и отклоняются назад по отношению к орбитальному движению комет, хвосты 3-го типа - почти прямые, но заметно отклоняются назад. При некоторых взаимных положениях Земли, кометы и Солнца, отклоненные назад хвосты 2-го и 3-го типа видны с Земли как бы направленными в сторону Солнца (так называемые аномальные хвосты). Физическая интерпретация разделения хвостов на типы, предложенная Бредихиным, в последующие годы значительно развивалась и в 70-х гг. 20 в. получила следующее содержание. Хвосты 1-го типа - плазменные и состоят из ионизованных молекул СО+, N2+, СН+, которые с большими ускорениями под действием солнечного ветра уносятся в сторону, противоположную направлению на Солнце. Хвосты 2-го типа образуются пылевыми частицами разной величины, непрерывно выделяющимися из ядра, хвосты же 3-го типа появляются в том случае, когда из ядра одновременно выделяется целое облако пылинок. Пылинки разной величины под действием светового давления получают различное ускорение, и облако растягивается в полосу, образующую хвост кометы, так называемую синхрону. Редко наблюдается прямой натриевый хвост, направленный вдоль плазменного хвоста (1-го типа). Нейтральные молекулы, присутствующие в голове комет, приобретают под действием светового давления примерно такое же ускорение, как и пылевые частицы, и поэтому движутся в направлении хвоста 2-го типа. Однако время их жизни до ионизации солнечным излучением составляет всего несколько часов. Поэтому они не успевают продвинуться далеко в хвост 2-го типа. Иногда их удается заметить в небольшом количестве только в начальном отрезке хвоста.
- 106.
Кометы и метеоры
-
- 107.
Кометы Космическая опасность
Другое Авиация, Астрономия, Космонавтика Можно представить, как бы выглядела бы подобная катастрофа. При приближении к Земле, тело начало бы увеличиваться в размерах. Сначала почти незаметная звезда за короткий срок сменила бы свой блеск на несколько звёздных величин, превратившись в одну из самых ярких звёзд на небе. При кульминации, она своими размерами на небе практически равнялась бы с Луной. При входе в атмосферу, тело обладающее 1- 2ой космической скоростью вызвало бы резкое сжатие и разогрев близлежащих масс воздуха. Если тело имело пористую структуру, то был бы возможен его раскол на более мелкие части, и сгорание основной массы в атмосфере Земли, если нет то произошёл бы только разогрев внешних слоёв тела, небольшое замедление скорости и после столкновения образование единственного кратера больших размеров. При втором варианте событий последствия для жизни на планете были бы апокалипсичны. Разумеется многое зависит от размеров тела. На существование разумной жизни может поставить крест столкновение даже с малым телом, обладающим около нескольких сот метров в диаметре, столкновение с телами большего размера может практически уничтожить жизнь вообще. Полёт тела в атмосфере сопровождался бы звуком похожим на звук от реактивного двигателя, увеличенного в несколько раз. За телом остался бы яркий хвост, образованный сверхразогретыми газами, что представляло бы неописуемое зрелище. При первом варианте на небе были бы видны тысячи болидов, а само зрелище было бы похоже на метеоритный дождь, только заметно превосходило его по силе. Последствия были бы не так катастрофичны как при первом варианте, но крупные болиды, достигнув земной коры, могли бы вызвать некоторые разрушения небольшого масштаба. При попадании крупного тела в земную кору, образовалась бы мощная ударная волна, которая, слившись с волной образовавшийся ещё при полёте, сравняла бы с землёй огромную площадь поверхности. При попадании в океан, поднялась бы мощная волна цунами, которая смыла бы всё с территорий, находящихся в нескольких сотнях километров от береговой линии. На стыке тектонических плит произошли бы сильные землетрясения и извержения вулканов, что повлекло бы новые цунами и выбросы пыли. На много лет на планете установился бы ледниковый период, а жизнь была бы откинута к начальным её формам. Если динозавры вымерли всё-таки по причине столкновения космического тела с Землёй, то оно, скорее всего, имело небольшие размеры и цельную структуру. Это подтверждает неполное уничтожение жизни, несущественное похолодание климата, а также наличие единственного кратера, предположительно в районе Мексиканского залива. Не исключено, что подобные события происходили не раз. В подтверждение этого некоторые учёные приводят в пример некоторые образования на поверхности Земли.
- 107.
Кометы Космическая опасность
-
- 108.
Комплексное исследование природных ресурсов Республики Бурятия на основе данных дистанционного зондирования
Другое Авиация, Астрономия, Космонавтика Байкальский институт природопользования СО РАН создан в январе 1998 года на базе Байкальского института рационального природопользования и Бурятского института естественных наук СО РАН. Распоряжением Правительства Республики Бурятия от 26.05.95 г. N 290-р институт определен головной организацией по координации и обеспечению исследований вопросов экологии, рационального использования природных ресурсов бассейна озера Байкал и международному сотрудничеству в этой области.
Институт входит в состав Сибирского отделения Российской академии наук, непосредственно подчиняется Президиуму СО РАН и работает под научно-методическим руководством Отделения океанологии, физики атмосферы и географии РАН, Объединенного ученого совета наук о Земле, а также имеет представительства в объединенных ученых советах по экономическим и химическим наукам СО РАН.
Главная цель института состоит в проведении фундаментальных и прикладных исследований по приоритетным направлениям:
проблемы природопользования: взаимодействие природных и социально-экономических систем;
химические элементы и соединения в природных и искусственных средах, создание новых материалов и ресурсосберегающих, экологобезопасных технологий.
В лаборатории радиобиофизики Бурятского института естественных наук проводятся исследования по разработке современных методик и приборов диагностики и лечения, на основе традиционной Монгольской (Тибетской) медицины.
- 108.
Комплексное исследование природных ресурсов Республики Бурятия на основе данных дистанционного зондирования
-
- 109.
Константин Эдуардович Циолковский
Другое Авиация, Астрономия, Космонавтика
- 109.
Константин Эдуардович Циолковский
-
- 110.
Конституционо-правовые основы государственной службы
Другое Авиация, Астрономия, Космонавтика Нормативным основанием для определения системы исполнительной власти в структурном плане является Конституция РФ. Статья 5 ее говорит о «единстве системы государственной власти»; гл. 12 о «системе органов государственной власти»; в п. «г» ст. 71 Конституции РФ в числе других ветвей власти сказано о «системе федеральных органов исполнительной власти». В итоге получается, что достаточно полного системно-структурного определения исполнительной власти в Конституции нет. В ст. 77 говорится о единой системе исполнительной власти, образуемой федеральными органами исполнительной власти и органами исполнительной власти субъектов Федерации в рамках предметов исключительного ведения федерации и совместного ведения. В таком же контексте эти подсистемы органов упомянуты и в ст. 78, а в ст. 112 косвенно сказано о структуре органов исполнительной власти». Кроме того, Конституция использует термин «государственный орган». Это ставит проблему соотнесения этих понятий и терминов между собой в целях выработки единого представления об органе исполнительной власти, а также о системе исполнительной власти в целом, об отличии правового статуса органа исполнительной власти от правового статуса органа управления государственного и негосударственного.
- 110.
Конституционо-правовые основы государственной службы
-
- 111.
Контакты с внеземными цивилизациями в древности
Другое Авиация, Астрономия, Космонавтика
- 111.
Контакты с внеземными цивилизациями в древности
-
- 112.
Концепция бесконечности и современная космология
Другое Авиация, Астрономия, Космонавтика Возникновение и развитие современной релятивистской космологии имеет большое мировоззренческое значение. Оно во многом изменило наши прежние представления о научной картине мира. Особенно радикальным было открытие так называемого красного смещения, свидетельствующего о расширении Вселенной. Этот факт нельзя было не учитывать при построении космологических моделей. Считать ли Вселенную бесконечной или конечной зависит от конкретных эмпирических исследований и, прежде всего от определения плотности материи во Вселенной, что имеет решающее значение для оценки кривизны пространства времени. Очевидно, что при нулевой или отрицательной кривизне модель должна быть открытой, при положительной замкнутой. Однако оценка плотности распределения материи во Вселенной наталкивается на серьезные трудности, связанные с наличием так называемого скрытого (невидимого) вещества в виде темных облаков космической материи. Хотя никакого окончательного вывода о том, является ли Вселенная открытой или замкнутой, сделать пока еще нельзя, но многие свидетельства говорят, по-видимому, в пользу открытой бесконечной ее модели. Во всяком случае, такая модель лучше согласуется с неограниченно расширяющейся Вселенной. Замкнутая же модель предполагает конец такого расширения и допущение ее последующего сжатия. Как мы уже отмечали выше, коренной недостаток такой модели состоит в том, что пока современная наука не располагает какими-либо фактами, подтверждающими подобное сжатие. К тому же сторонники замкнутой Вселенной признают, что эволюция Вселенной началась с "большого взрыва". Наконец, остается нерешенной и проблема оценки плотности распределения материи и связанной с ней величины кривизны пространства времени.
- 112.
Концепция бесконечности и современная космология
-
- 113.
Концепция эволюционно-космического христианства П. Тейяра де Шардена
Другое Авиация, Астрономия, Космонавтика 1 Биологическая эволюция играет большую роль в становлении Космоса. Однако не она определяет закономерности его развития. Решающее значение Тейяр придает третьему этапу эволюции, связанному со становлением и развитием человечества. Человек, согласно его ученью, есть звено в биологической эволюции, связанное с предшествующими этапами. Однако он занимает совершенно исключительное место в мироздании, потому что на этом уровне возникает высшая форма в развитии мира мысль, сознание, духовность. «Изменение биологического состояния, приведшее пробуждению мысли, не просто соответствующая критическая точка, пройденная индивидом или даже видом. Будучи более обширным, это изменение затрагивает саму жизнь в ее органической целостности и, следовательно) оно знаменует собой трансформацию, затрагивающую состояние всей планеты). До появленния человека с его уникальной способностью к мышлению все в мире было разобщено и это разобщение постоянно усиливалось. Человек же через свою деятельность постоянно осуществляет высший синтез всего существующего, создает явную сферу сферу духа. Эту сферу Тейяр по аналогии со стадиями геохимического развития земли барисферой, литосферой, биосферой называет Ноосферой мыслящим пластом Земли.
- 113.
Концепция эволюционно-космического христианства П. Тейяра де Шардена
-
- 114.
Коперник и его гелиоцентрическая система
Другое Авиация, Астрономия, Космонавтика Геоцентрические системы Евдокса и Птолемея не позволяли измерить расстояния до планет. В гелиоцентрической Коперника впервые появилась возможность рассчитать реальные пропорции Солнечной системы, пользуясь радиусом земной орбиты как астрономической единицей. Коперник понял, что если мы смотрим на планеты, находясь на движущейся Земле, то планеты кроме движений по своим орбитам получают дополнительное круговое движение. С Земли оно будет видно в форме эпицикла. Размер эпицикла равен диаметру орбиты нашей планеты. Поэтому чем дальше от нас планета, тем меньшим будет казаться её эпицикл, и по его угловым размерам можно будет судить о её удаленности. В системе Коперника “…последовательность и величины светил, все сферы и даже само небо окажутся так связанными, что ничего нельзя будет переставить ни в какой части, не производя путаницы в остальных частях и по всей Вселенной".
- 114.
Коперник и его гелиоцентрическая система
-
- 115.
Королев С.П.
Другое Авиация, Астрономия, Космонавтика Королев как губка впитывал в себя все новое, что появлялось в авиастроении, не теряя надежды, что приобретенный опыт ему пригодится. Вскоре Королева назначили заместителем начальника сборочного цеха по Ту-2. Это было большое доверие. Но мысль о создании реактивного самолета не покидала его. Тогда он еще не знал, что, несмотря на все трудности, в феврале 1940 года в нашей стране прошли летные испытания первого ракетного планера с жидкостным ракетным двигателем. Правда, он был ведом самолетом-буксировщиком. Но это был очень важный факт и первый шаг в развитии реактивной авиации. До этого полета подобного опыта мировая практика еще не знала. Он оказал положительное влияние на полеты с реактивными двигателями. В 1942 году был поднят первый самолет с реактивным двигателем. Пилотировал его летчик-испытатель Григорий Бахчиванджи. Сейчас во всех направлениях земного шара летают широко известные самолеты конструкции Андрея Николаевича Туполева, Сергея Владимировича Ильюшина, Олега Константиновича Антонова. Многоместные пассажирские лайнеры покоряют воздушное пространство со скоростью до тысячи километров в час. Эта скорость достигнута благодаря применению тепловых двигателей, работающих на принципе использования реактивной тяги.
- 115.
Королев С.П.
-
- 116.
Космизм
Другое Авиация, Астрономия, Космонавтика
- 116.
Космизм
-
- 117.
Космические достижения СССР в 1957-1961 годах
Другое Авиация, Астрономия, Космонавтика Десятки неразрешённых вопросов стояли перед наукой. Надо было создать во много раз более мощные ракеты-носители для выведения на орбиту космических кораблей, в несколько раз более тяжёлых, чем самые тяжёлые искусственные спутники, запущенные ранее. Нужно было сконцентрировать и построить летательные аппараты, не только полностью обеспечивающие безопасность космонавта на всех этапах полёта, но и создающие необходимые условия для его жизни и работы. Необходимо было разработать целый комплекс специальной тренировки, который позволил бы организму будущих космонавтов заранее приспособиться к существованию в условиях перегрузок и невесомости. Надо было разрешить очень много и других вопросов.
- 117.
Космические достижения СССР в 1957-1961 годах
-
- 118.
Космические составляющие и излучения
Другое Авиация, Астрономия, Космонавтика Огромные межзвездные облака из светящихся разреженных газов получили название газовых диффузных туманностей. Одна из самых известных - туманность в созвездии Ориона, которая видна даже невооруженным глазом около средней из трех звездочек, образующих "меч" Ориона. Газы, ее образующие, светятся холодным светом, переизлучая свет соседних горячих звезд. В состав газовых диффузных туманностей входят главным образом водород, кислород, гелий и азот. Такие газовые или диффузные туманности служат колыбелью для молодых звезд, которые рождаются так же, как некогда родилась наша Солнечная система. Процесс звездообразования непрерывен, и звезды продолжают возникать и сегодня.
В межзвездном пространстве наблюдаются также диффузные пылевые туманности. Эти облака состоят из мельчайших твердых пылинок. Если вблизи пылевой туманности окажется яркая звезда, то ее свет рассеивается этой туманностью и пылевая туманность становится непосредственно наблюдаемой (рис. 1). Газовые и пылевые туманности могут вообще поглощать свет звезд, лежащих за ними, поэтому на снимках неба они часто видны как черные зияющие провалы на фоне Млечного Пути. Такие туманности называют темными. На небе южного полушария есть одна очень большая темная туманность, которую мореплаватели прозвали Угольным мешком. Между газовыми и пылевыми туманностями нет четкой границы, поэтому часто они наблюдаются совместно как газопылевые туманности.
Диффузные туманности являются лишь уплотнениями в той крайне разреженной межзвездной материи, которая получила название межзвездного газа. Межзвездный газ обнаруживается лишь при наблюдениях спектров далеких звезд, вызывая в них дополнительные линии поглощения. Ведь на большом протяжении даже такой разреженный газ может поглощать излучение звезд. Возникновение и бурное развитие радиоастрономии позволили обнаружить этот невидимый газ по тем радиоволнам, которые он излучает. Огромные темные облака межзвездного газа состоят в основном из водорода, который даже при низких температурах излучает радиоволны на длине 21 см. Эти радиоволны беспрепятственно проходят сквозь газ и пыль. Именно радиоастрономия помогла нам в исследовании формы Млечного Пути. Сегодня мы знаем, что газ и пыль, перемешанная с большими скоплениями звезд, образуют спираль, ветви которой, выходя из центра Галактики, обвивают ее середину, создавая нечто похожее на каракатицу с длинными щупальцами, попавшую в водоворот.
В настоящее время огромное количество вещества в нашей Галактике находится в виде газопылевых туманностей. Межзвездная диффузная материя сконцентрирована сравнительно тонким слоем в экваториальной плоскости нашей звездной системы. Облака межзвездного газа и пыли загораживают от нас центр Галактики. Из-за облаков космической пыли десятки тысяч рассеянных звездных скоплений остаются для нас невидимыми. Мелкая космическая пыль не только ослабляет свет звезд, но и искажает их спектральный состав. Дело в том, что когда световое излучение проходит через космическую пыль, то оно не только ослабляется, но и меняет цвет. Поглощение света космической пылью зависит от длины волны, поэтому из всего оптического спектра звезды сильнее поглощаются синие лучи и слабее - фотоны, соответствующие красному цвету. Этот эффект приводит к явлению покраснения света звезд, прошедших через межзвездную среду.
- 118.
Космические составляющие и излучения
-
- 119.
Космические технологии
Другое Авиация, Астрономия, Космонавтика В Советском Союзе был выполнен значительный объем работ по изучению процессов сварки в условиях микрогравитации и созданию различного оборудования для этой цели. При создании такого оборудования необходимо учитывать ряд требований к его конструкции и эксплуатации, обусловленных особенностями проведения работ на космическом аппарате. Безопасная эксплуатация оборудования на космическом аппарате зависит от правильного учета факторов, таких как разрушительное действие источника нагрева, наличие ванны с жидким металлом и брызг расплавленного металла, повышенное напряжение источников питания и побочные явления типа теплового или рентгеновского излучения. Например, в установке типа "Вулкан", предназначенной для электронно-лучевой сварки, ускоряющее напряжение было выбрано меньше 15 В, так как при этом исключается возможность появления тормозного рентгеновского излучения. Удачный выбор режима дуговой сварки позволил избежать разбрызгивания металла. В той же установке высоковольтные элементы и цепи как потенциальные источники опасности были заключены в один блок и залиты эпоксидной смолой. Для локализации металлической пыли, теплового и светового излучений в установке "Вулкан" использован специальный защитный кожух. Контроль параметров процесса и поддержание их на необходимом уровне обеспечивался системой электрической и механической защиты.
- 119.
Космические технологии
-
- 120.
Космічна погода
Другое Авиация, Астрономия, Космонавтика Мабуть, одним з найбільш яскравих проявів ворожості космічного простору до людини і його творінь, окрім, звичайно, майже повного за земними мірками вакууму, є радіація електрони, протони і важчі ядра, розігнані до величезних швидкостей і здатні руйнувати органічні і неорганічні молекули. Про шкоду, яку радіація наносить живим істотам, добре відомо, але чимала доза опромінювання (тобто кількість енергії, поглиненої речовиною і що пішла на його фізичне і хімічне руйнування) може виводити з ладу і радіоелектронні системи. Електроніка страждає також і від „единичных збоїв“, коли частинки особливо високої енергії, проникаючи глибоко всередину електронної мікросхеми, змінюють електричний стан її елементів, збиваючи елементи пам'яті і викликаючи фальшиві спрацьовування. Чим складніше і современнєє мікросхема, тим менше розміри кожного елементу і тим більше вірогідність збоїв, які можуть привести до її неправильної роботи і навіть до зупинки процесора. Ця ситуація по своїх наслідках схожа з раптовим зависанням комп'ютера в розпал набору тексту, з тією лише різницею, що апаратура супутників, взагалі кажучи, призначена для автоматичної роботи. Для виправлення помилки доводиться чекати наступного сеансу зв'язку із Землею за умови, що супутник буде здатний вийти на зв'язок. Найглибше в магнітосферу енергійні частинки проникають в приполярних районах, оскільки частинки тут можуть велику частину шляху вільно рухатися уздовж силових ліній, майже перпендикулярних до поверхні Землі. Пріекваторіальниє райони захищеніші: там геомагнітне поле, майже паралельне земній поверхні, змінює траєкторію руху частинок на спіральну і відводить їх убік. Тому траси польотів, що проходять у високих широтах, значно небезпечніші з погляду радіаційного ураження, чим нізкоширотниє. Ця загроза відноситься не тільки до космічних апаратів, але і до авіації. На висотах 911 кілометрів, де проходять більшість авіаційних маршрутів, загальний фон космічної радіації вже настільки великий, що річна доза, що отримується екіпажами, устаткуванням і пасажирами, що часто літають, повинна контролюватися за правилами, встановленими для радіаційно небезпечних видів діяльності. Надзвукові пасажирські літаки „Конкорд“, що піднімаються на ще більші висоти, мають на борту лічильники радіації і зобов'язані летіти, відхиляючись на південь від найкоротшої північної траси перельоту між Європою і Америкою, якщо поточний рівень радіації перевищує безпечну величину. Проте після найбільш могутніх сонячних спалахів доза, отримана навіть протягом одного польоту на звичайному літаку може бути більше, ніж доза ста флюорографічеськіх обстежень, що примушує серйозно розглядати питання про повне припинення польотів в такий час. На щастя, сплески сонячної активності подібного рівня реєструються рідше, ніж один раз за сонячний цикл 11 років.
- 120.
Космічна погода