Химия

  • 1321. Химия алканов нефтей
    Информация пополнение в коллекции 03.05.2012

    Хотя алканы разветвлённого строения в настоящее время практически не используют для каких-либо корреляционных целей. Некоторые из них вполне могут помочь в определении возраста нефти это - 12- и 13- монометилзамещенные алканы их структуры изображены на рисунке 2 [Петров, 1984]. Высокие концентрации этих алканов, не оставляют сомнений в реликтовости их природы. Считается, что высокие концентрации 12- и 13- метилалканов связаны с возрастом и специфичностью исходного органического вещества. В подавляющем большинстве нефтей и битумов, связанными с древними отложениями Сибирской платформы 12- и 13-монометилалканы присутствуют в значительных количествах (десятки процентов от общего количества высокомолекулярных алканов). В высоких концентрациях эти биометки также присутствуют в древних нефтях и рассеянном органическом веществе Омана. На рисунке 8 красными точками обозначены монометилалканы. Однако не все докембрийские нефти содержат эти реликтовые алканы. В нефтях докембрия Волго-Уральской провинции и в некоторых других докембрийских нефтях высокие концентрации этих углеводородов не обнаружены. В настоящее время 12- и 13-метилалканы для древних нефтей Сибирской платформы являются ведущей группой биомаркеров.

  • 1322. Химия белка
    Информация пополнение в коллекции 11.05.2010

    Для белков также используется понятие КОНФОРМАЦИЯ белковой молекулы - определенное, но не застывшее, не неизменное взаимное расположение частей молекулы. Так как конформация белковой молекулы формируется при участии слабых типов связей, то она является подвижной (способной к изменениям), и белок может изменять свою структуру. В зависимости от условий внешней среды молекула может существовать в разных конформационных состояниях, которые легко переходят друг в друга. Энергетически выгодными для реальных условий являются только одно или несколько конформационных состояний, между которыми существует равновесие. Переходы из одного конформационного состояния в другое обеспечивают функционирование белковой молекулы. Это обратимые конформационные изменения (встречаются в организме, например, при проведении нервного импульса, при переносе кислорода гемоглобином). При изменении конформации часть слабых связей разрушается, и образуются новые связи слабого типа.

  • 1323. Химия в биологии , медицине, производстве лекарственных веществ
    Информация пополнение в коллекции 09.12.2008

    Основными проблемами, решаемыми в последние годы физико-химической биологией, являются синтез белков и нуклеиновых кислот, установление нуклеотидной последовательности генома многих организмов (в том числе определение полной нуклеотидной последовательности генома человека), направленный транспорт веществ через биологические мембраны; разработка новых лекарств, новых материалов для медицинского использования, например, для биопротезирования. Особое внимание уделяется разработке биотехнологий, которые часто бывают более экономически выгодны, эффективны, чем традиционные "технические", не говоря уже об их экологической чистоте. Ведутся активные работы по клонированию растений и животных, а также по получению отдельных органов вне организма. Особо примечателен недавний успех швейцарских ученых ( первые сообщения в печати появились в конце февраля 1997 г.), получивших путем клонирования сельскохозяйственное животное овцу, которая была выращена из клетки вымени матери-овцы; дочерняя генетическая копия была названа Долли . Это свидетельствует о том, что клонирование из сферы чисто научных экспериментов переходит в сферу практики. Необходимо упомянуть и о лечении заболеваний новым методом генотерапии изменением наследственности. Лечебный эффект достигается путем переноса "исправленного" гена либо с помощью ретровируса, либо внедрением липосом, содержащих генетические конструкции. Генотерапевтические методы только зарождаются, но именно с их помощью уже была вылечена маленькая девочка, больная муковисцидозом; особо перспективно применение генотерапии в лечении болезней, передающихся по наследству или возникающих под действием вирусов. Вероятно, с привлечением именно этих методов будут побеждены СПИД, рак, грипп и множество других, менее распространенных болезней.

  • 1324. Химия в биологии, медицине и производстве лекарственных веществ
    Информация пополнение в коллекции 09.12.2008

    Îñíîâíûìè ïðîáëåìàìè, ðåøàåìûìè â ïîñëåäíèå ãîäû ôèçèêî-õèìè÷åñêîé áèîëîãèåé, ÿâëÿþòñÿ ñèíòåç áåëêîâ è íóêëåèíîâûõ êèñëîò, óñòàíîâëåíèå íóêëåîòèäíîé ïîñëåäîâàòåëüíîñòè ãåíîìà ìíîãèõ îðãàíèçìîâ (â òîì ÷èñëå îïðåäåëåíèå ïîëíîé íóêëåîòèäíîé ïîñëåäîâàòåëüíîñòè ãåíîìà ÷åëîâåêà), íàïðàâëåííûé òðàíñïîðò âåùåñòâ ÷åðåç áèîëîãè÷åñêèå ìåìáðàíû; ðàçðàáîòêà íîâûõ ëåêàðñòâ, íîâûõ ìàòåðèàëîâ äëÿ ìåäèöèíñêîãî èñïîëüçîâàíèÿ, íàïðèìåð, äëÿ áèîïðîòåçèðîâàíèÿ. Îñîáîå âíèìàíèå óäåëÿåòñÿ ðàçðàáîòêå áèîòåõíîëîãèé, êîòîðûå ÷àñòî áûâàþò áîëåå ýêîíîìè÷åñêè âûãîäíû, ýôôåêòèâíû, ÷åì òðàäèöèîííûå "òåõíè÷åñêèå", íå ãîâîðÿ óæå îá èõ ýêîëîãè÷åñêîé ÷èñòîòå. Âåäóòñÿ àêòèâíûå ðàáîòû ïî êëîíèðîâàíèþ ðàñòåíèé è æèâîòíûõ, à òàêæå ïî ïîëó÷åíèþ îòäåëüíûõ îðãàíîâ âíå îðãàíèçìà. Îñîáî ïðèìå÷àòåëåí íåäàâíèé óñïåõ øâåéöàðñêèõ ó÷åíûõ ( ïåðâûå ñîîáùåíèÿ â ïå÷àòè ïîÿâèëèñü â êîíöå ôåâðàëÿ 1997 ã.), ïîëó÷èâøèõ ïóòåì êëîíèðîâàíèÿ ñåëüñêîõîçÿéñòâåííîå æèâîòíîå îâöó, êîòîðàÿ áûëà âûðàùåíà èç êëåòêè âûìåíè ìàòåðè-îâöû; äî÷åðíÿÿ ãåíåòè÷åñêàÿ êîïèÿ áûëà íàçâàíà Äîëëè [11]. Ýòî ñâèäåòåëüñòâóåò î òîì, ÷òî êëîíèðîâàíèå èç ñôåðû ÷èñòî íàó÷íûõ ýêñïåðèìåíòîâ ïåðåõîäèò â ñôåðó ïðàêòèêè. Íåîáõîäèìî óïîìÿíóòü è î ëå÷åíèè çàáîëåâàíèé íîâûì ìåòîäîì ãåíîòåðàïèè èçìåíåíèåì íàñëåäñòâåííîñòè. Ëå÷åáíûé ýôôåêò äîñòèãàåòñÿ ïóòåì ïåðåíîñà "èñïðàâëåííîãî" ãåíà ëèáî ñ ïîìîùüþ ðåòðîâèðóñà, ëèáî âíåäðåíèåì ëèïîñîì, ñîäåðæàùèõ ãåíåòè÷åñêèå êîíñòðóêöèè. Ãåíîòåðàïåâòè÷åñêèå ìåòîäû òîëüêî çàðîæäàþòñÿ, íî èìåííî ñ èõ ïîìîùüþ óæå áûëà âûëå÷åíà ìàëåíüêàÿ äåâî÷êà, áîëüíàÿ ìóêîâèñöèäîçîì; îñîáî ïåðñïåêòèâíî ïðèìåíåíèå ãåíîòåðàïèè â ëå÷åíèè áîëåçíåé, ïåðåäàþùèõñÿ ïî íàñëåäñòâó èëè âîçíèêàþùèõ ïîä äåéñòâèåì âèðóñîâ. Âåðîÿòíî, ñ ïðèâëå÷åíèåì èìåííî ýòèõ ìåòîäîâ áóäóò ïîáåæäåíû ÑÏÈÄ, ðàê, ãðèïï è ìíîæåñòâî äðóãèõ, ìåíåå ðàñïðîñòðàíåííûõ áîëåçíåé.

  • 1325. Химия в криминалистике
    Информация пополнение в коллекции 12.01.2009

    Если через слой адсорбированного вещества пропускать соответствующий растворитель, начнётся процесс, обратный адсорбции, и часть адсорбированных молекул вновь перейдёт с поверхности адсорбента в раствор. Подобный процесс называется десорбцией. В реальных экспериментах процессы адсорбции и десорбции разделить во времени нельзя, потому что они протекают параллельно друг другу. Однако, правильно подобрав условия эксперимента, можно добиться того, что определяющую роль станет играть лишь один из этих процессов, поскольку скорость протекания этого процесса значительно превысит скорость другого, конкурентного. Если проследить за перемещением вещества по длине трубки или, что терминологически более правильно, по высоте хромотографической колонки, окажется, что на своём пути оно то задерживается на поверхности адсорбента, то вновь переходит в раствор. О чём говорит такое поведение молекул этого вещества? Вещество, которое в виде раствора перемещается под действием силы тяжести по колонке, распределяется между поверхностью твёрдого тела (здесь мела) и растворителем (здесь бензолом). В результате одна часть молекул этого вещества как бы закрепляется на твёрдой поверхности, а другая остаётся в растворе. Вопрос о том, сколько адсорбируемого вещества окажется на поверхности, а сколько в растворе, зависит от свойств этого вещества, а так же от свойств твёрдого тела и особенностей его поверхности, от природы растворителя и количественного соотношения фаз, т.е. твёрдого вещества мела, растворителя бензол и разделяемого вещества хлорофилла, и, конечно, от температуры колонки.

  • 1326. Химия в решении сырьевой проблемы
    Информация пополнение в коллекции 12.01.2009

    Кроме того, в различных отраслях промышленности используется громадное количество новых соединений, отсутствующих в природе. Ежегодно их синтезируется в мире более 250 тыс.,из них около 300 находят промышленное применение и могут попасть в окружающую среду. По данным Всемирной организации здравоохранения, среди химических соединений, используемых в промышленном масштабе, примерно 40 тыс. вредны для человека. Процесс загрязнения окружающей среды несвойственной ей веществами, раньше носивший локальный характер, в последнее время принял глобальные масштабы. Особенно загрязнение среды такими несвойственными биосфере элементами, как свинец, ртуть, кадмий. Мощность техногенного воздействия на живую природу достигла такой величины, что возникла опасность необратимых изменений за счёт нарушения слагавшихся в течение миллионов лет природных динамических равновесий. Даже загрязнение среды такими характерными для природных круговоротов веществами, как нитраты, соли аммония, фосфаты, достигло на значительных участках земной поверхности концентраций, при которых природные механизмы оказываются недостаточными для плавного включения этих веществ в круговорот. В результате, например, во многих крупных водоёмах земного шара произошло резкое изменение в экосистемах, что привело к большому обеднению видами живых организмов.

  • 1327. Химия в хозяйстве
    Информация пополнение в коллекции 09.12.2008

    Таким образом, почва состоит из минеральной и органической (гумуса) частей. Минеральная часть составляет от 90 до 99 % и более от всей массы почвы. В ее состав входят почти все элементы периодической системы Д. И. Менделеева. Однако основными составляющими минеральной части почв являются связанные в соединения кислород, кремний, алюминий и железо. Эти четыре элемента занимают около 93 % массы минеральной части. Гумус является основным источником питательных веществ для растений. Благодаря жизнедеятельности населяющих почву микроорганизмов происходит минерализация органического вещества с освобождением в доступной для растений форме азота, фосфора, серы и других необходимых для растений химических элементов. Органическое вещество оказывает большое влияние на формирование почв и изменение ее свойств. При разложении органических веществ почвы выделяется углекислый газ, который пополняет приземную часть атмосферы и ассимилируется растениями в процессе фотосинтеза. Однако какой-бы богатой питательными веществами ни была почва, рано или поздно она начинает истощаться. Поэтому для поддержания плодородия в нее необходимо вносить питательные вещества (удобрения) органического или минерального происхождения. Кроме того, что удобрения поставляют растениям питательные вещества, они улучшают физические, физико-механические, химические и биологические свойства почв. Органические удобрения в значительной степени улучшают водно-воздушные и тепловые свойства почв. Способность почвы поглощать пары воды и газообразные вещества из внешней среды является важной характеристикой. Благодаря ей почва задерживает влагу, а также аммиак, образующийся в результате разложения органических веществ и служащий важным питательным веществом.

  • 1328. Химия воды и микробиология
    Контрольная работа пополнение в коллекции 16.11.2010

    Скорость обмена зависит от размена иона, величины его заряда и способности к гидратации. Она увеличивается с повышением заряда иона и уменьшением степени гидратации. Рабочая обменная емкость катионов по иону Na+ примерно в два раза меньше, чем по ионам Ca2+ или Mg2+. Аниониты имеют большую избирательность к сульфат-иону по сравнению с хлорид-ионом. Рабочая обменная емкость по сульфат-иону на 40 50% выше, чем по хлорид-иону. На рабочую обменную емкость влияет скорость фильтрации через ионитовый фильтр. При значительной скорости фильтрования воды рабочая обменная емкость заметно уменьшается. Эта зависимость рабочей обменной емкости от скорости фильтрования является общей для всех видов ионитов. Обычно рабочая обменная емкость составляет около 60% от полной, но в зависимости от режима фильтрования может изменяться. Высота слоя, при которой происходит снижение жесткости исходной воды до заданной величины, называется высотой защитного слоя ионита. На рабочую обменную емкость ионитов влияет и их фракционный состав. Чем меньше размер зерен, тем выше скорость обмена ионов. Размер частиц основной рабочей фракции большинства марок ионитов составляет 0,5мм.

  • 1329. Химия вокруг нас
    Информация пополнение в коллекции 12.01.2009

    В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды Н2О и углекислого газа (диоксида углерода) СО2. При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происходит с человеком. Кроме того, в горбах верблюда содержится жир, который служит одновременно запасом пищи и источником метаболической воды.

  • 1330. Химия Железа
    Информация пополнение в коллекции 12.01.2009

    Месторождения железных руд образуются в различных геологических условиях; с этим связано разнообразие состава руд и условий их залегания. Железные руды разделяются на следующие промышленные типы:

    1. Бурые железняки руды водной окиси железа (главный минерал гидрогетит), 30-55% железа.
    2. Красные железняки, или гематитовые руды (главный минерал гематит, иногда с магнетитом), 51-66% железа.
    3. Магнитные железняки (главный минерал магнетит), 50-65% железа.
    4. Сидеритовые или карбонатные осадочные руды, 30-35% железа.
    5. Силикатные осадочные железные руды, 25-40% железа.
  • 1331. Химия и медицина
    Информация пополнение в коллекции 12.01.2009

    В средние века алхимики неоднократно делали попытки вмешаться в медицину и часто врач, и химик совмещались в одном лице. Однако алхимические теории не могли принести пользы практической медицине, так как они основывались не на опыте, а на предвзятых и ложных утверждениях и, как правило, вели к ошибкам. Так, легендарный химик и врач, Василий Валентин, написавший книгу о сурьме («триумфальная колесница антимония»), предлагал ее для избавления от всех болезней. Этот элемент- аналог мышьяка- ничего, кроме вреда, не мог принести страждущим. Случайные удачи химиков и использование народного опыта все-таки помогали медикам, и контакты между ними и химиками никогда не прерывались. В XV в. Теофраст Парацельс опроверг учение о пневмах, но тут же заменил их не менее таинственным «археем», не имеющим материальной природы, но подчиняющим себе материю. Эти фантастические «теории» были скоро забыты, но практическая врачебная деятельность Парацельса оказалась продуктивной. Он исследовал соединения ртути и мышьяка и заложил основу ятрохимии - науки о применении определенных химических соединений для лечения болезней. Правда, рецепты Парацельса вызвали бы у современных врачей скорее испуг, чем восхищение, но все же это были шаги по правильному пути, который действительно мог привести к успеху и привел к нему через четыре сотни лет. История медицины сохранила опись «всяким зельям», привезенным в Москву в 1602г. английским аптекарем Джеймсом Френчем по поручению королевы Елизаветы. Среди «зелий» числятся: «цидоны яблоки в сахаре, слива дамасен, сыроп соку цитронова, водка коричная, можжевеловая, пиретрум, калган, алоэ, опиум» и даже «глина армянская»; имеются и вещества животного происхождения, например «олений рог». Всего 171 лекарство. Некоторые из них безусловно приносили пользу, это, в частности, «сок цитронов», т.е. лимонный сок, калган, алоэ, которые и ныне применяются в медицине.

  • 1332. Химия и обмен углеводов
    Информация пополнение в коллекции 20.12.2010

    NB! Функции цикла трикарбоновых кислот многообразны

    • Интегративная цикл Кребса является центральным метаболическим путем, объединяющим процессы распада и синтеза важнейших компонентов клетки.
    • Анаболическая субстраты цикла используются для синтеза многих других соединений: оксалацетат используется для синтеза глюкозы (глюконеогенез) и синтеза аспарагиновой кислоты, ацетил-КоА для синтеза гема, ?-кетоглутарат для синтеза глютаминовой кислоты, ацетил-КоА для синтеза жирных кислот, холестерола, стероидных гормонов, ацетоновых тел и др.
    • Катаболическая в этом цикле завершают свой путь продукты распада глюкозы, жирных кислот, кетогенных аминокислот все они превращаются в ацетил-КоА; глутаминовая кислота в ?-кетоглутаровую; аспарагиновая в оксалоацетат и пр.
    • Собственно энергетическая одна из реакций цикла (распад сукцинил-КоА) является реакцией субстратного фосфорилирования. В ходе этой реакции образуется одна молекула ГТФ (реакция перефосфорилирования приводит к образованию АТФ).
    • Водороддонорная при участии трех НАД+-зависимых дегидрогеназ ( дегидрогеназ изоцитрата, ?-кетоглутарата и малата) и ФАД-зависимой сукцинатдегидрогеназы образуются 3 НАДН•Н+ и 1 ФАДН2. Эти восстановленные коферменты являются донорами водорода для дыхательной цепи митохондрий, энергия переноса водородов используется для синтеза АТФ.
    • Анаплеротическая восполняющая. Значительные количества субстратов цикла Кребса используются для синтеза разных соединений и покидают цикл. Одной из реакций, восполняющих эти потери, является реакция, катализируемая пируваткарбоксилазой.
  • 1333. Химия и технология производства 2–нафтола щелочным плавлением
    Курсовой проект пополнение в коллекции 19.05.2010

    В процессе сплавления с сульфидирующими агентами (растворы сернистого натрия или полисульфидов натрия) реакционная масса имеет консистенцию достаточно подвижной жидкости или суспензии, с небольшим содержанием твердых частиц. В этих случаях для размешивания пригодны мешалки любого типа. Процессы сульфидирования, проводимые под давлением, также приводят к образованию достаточно подвижной реакционной массы. При сульфидированин методом запекания, которое проводится с участием молекулярной серы, как и в процессах щелочного плавления, проводимого методом запекания, получаются твердые продукты реакции или жидкие, но настолько вязкие, что размешивание реакционной массы иногда становится невозможным. Следует отметить, что в процессах щелочного плавления не требуется Интенсивное перемешивание; так как в данном случае оно не является фактором, способствующим взаимодействию ингредиентов. Перемешивание используется в этих процессах для некоторого улучшения условий их проведения, т. е. для очистки стенок аппарата от налипающей на них массы и суспендирования незначительного количества твердых взвешенных частиц, что позволяет предотвратить местные перегревы и пригорание реакционной массы. Поэтому реакционную аппаратуру в ряде случаев снабжают мешалками, обеспечивающими неэнергичное перемешивание массы.

  • 1334. Химия и физика полимеров
    Методическое пособие пополнение в коллекции 15.10.2009

    Прочностью называется способность сопротивляться разрушению под действием механических напряжений (выражается в МПа). Разрушением - называется нарушение целостности (сплошности) материала, то есть его разрыв с образованием новых поверхностей. Под теоретической прочностью понимают прочность тела с идеальной структурой (без дефектов) при одноосной статической деформации растяжения и сдвига. Под технической прочностью понимают прочность реальных полимеров. Она ниже теоретической из-за наличия теплового движения и дефектов. Из-за дефектов разрывы определяются не средним напряжением, а местным напряжением на микродефектах, то есть в областях перенапряжения. При значительных нагрузках полимер может разрушаться даже мгновенно. Если же сила невелика, то время до разрушения увеличивается, поэтому различают кратковременную и длительную прочность

  • 1335. Химия кадмия
    Реферат пополнение в коллекции 09.12.2008

    Особый интерес ученых вызывало выращивание в невесомости кристалла КРТ, представляющего собой твердый раствор теллуридов кадмия и ртути. Этот полупроводниковый материал незаменим для изготовления теплэвизиров точнейших инфракрасных приборов, применяемых в медицине, геологии, астрономии, электронике, радиотехнике и многих других важных областях науки и техники. Получить это соединение в земных условиях чрезвычайно трудно: его компоненты из-за большой разницы в плотности ведут себя как герои известной басни И. А. Крылова лебедь, рак и щука, и в результате вместо однородного сплава получается слоеный «пирог». Ради крохотного кристаллика КРТ приходится выращивать большой кристалл и вырезать из него тончайшую пластинку пограничного слоя, а все остальное идет в отходы. Иначе нельзя: ведь чистота и однородность кристалла КРТ оцениваются в стомиллионных долях процента. Немудрено, что на мировом рынке один грамм этих кристаллов стоит «всего» восемь тысяч долларов.

  • 1336. Химия как отрасль естествознания
    Информация пополнение в коллекции 08.11.2009

    Д.И. Менделееву в момент создания периодической системы было известно 62 химических элемента, а в настоящее время мы знаем уже 112. В 30-х гг. последним элементом этой системы был уран (U девяносто второй элемент). Начиная с 40-х гг. новые элементы открывали регулярно по нескольку элементов в десятилетие. В 1940 1945 гг. путем физического синтеза атомных ядер были открыты элементы с номера 93 по 96: нептуний, плутоний, америций, кюрий. В 1949 1952 гг. стали известны берклий, калифорний, эйнштейний, фермий, менделевий (с номера от 97 по 101). В последующие 40 лет были синтезированы элементы от 102-го по 109-й: нобелий, лоуренсий, курчатовий, жолиотий, резерфордий, борий, ганий, мейтнерий. Как правило, они носят имена выдающихся ученых-физиков или химиков. Например, элементы № 108 и № 109 названы в честь Отто Гана и Лизы Мейтнер, открывших в 1935 г. реакцию самопроизвольного деления урана. Следует отметить, что элементы со 102-го по 109-й крайне неустойчивы: период их полураспада составляет сотые и тысячные доли секунды. Считается, что элементы после № 110 являются настолько короткоживущими, что будут распадаться в момент их образования. Однако вполне возможно, что при номерах 126, 164, 184 существуют островки стабильности, означающие длительное существование элементов с этими номерами.

  • 1337. Химия каренов
    Курсовой проект пополнение в коллекции 10.02.2011

    Это превращение обусловлено особенностями строения производных 2- и 4-карена: подобно тому, как в цис-1,3-диеновых системах возможен 1,5-диенильный сдвиг водорода, в соединениях ряда карана, имеющих винилциклопропановый фрагмент, возможен 1,5-гомодиенильный сдвиг. Реакция протекает через шестиэлектронное переходное состояние и подчиняется правилам отбора для термических водородных сдвигов.56 Гомолитического разрыва углерод-углеродной связи не происходит, так как энергия активации 1,5-гомодиенильного сдвига значительно ниже, чем энергия винилциклопропановой перегруппировки; в случае 2-карена она составляет 118 кДжмоль-1 (см.91). Необходимое условие осуществления 1,5-сдвига эндо-ориентация участвующих в образовании ПС связи СН и винильной группы.93 Это единственное стереохимическое требование для термической перегруппировки цис-1-метил-2-винилциклопропана, расположение заместителей в молекуле которого не вносит дополнительного напряжения. Это требование выполняется и для молекулы 2-карена (31), но из-за того, что двойная связь входит в шестичленный цикл, она отклоняется от направления, оптимального для сопряжения с ЦПК и образования ПС. Расстояние между С(3) и атомом водорода при С(8) в конформации "плоского кресла" составляет ~3.1 Å.38 Это означает, что молекула 2-карена (31) при нагревании должна сначала изменить конформацию (при этом расстояние С(3)Н(8) уменьшается до 2.З Å), и только затем может произойти 1,5-гомодиенильный сдвиг.

  • 1338. Химия лантаноидов
    Реферат пополнение в коллекции 09.12.2008

     

    1. Зеленцов В.В, Соболева Н.Н. Курс «Открытая Химия 2.0»
    2. Ахметов Н.С. Общая и неорганическая химия. -4-е изд., испр. - М.: Высш. школа, 2001. 743 с.
    3. Глинка Н.Л. Общая химия. -25-е изд., испр. Л.: Химия, 1986. -704 с.
    4. Ахметов Н.С. Общая и неорганическая химия. -1-е изд., - М.: Высш. школа, 1981. 679 с.
    5. Brandukova N.Е., Vygodskii Ya.S., Vinogradova S.V. Applications of the samarium diiodide in organic and polymer synthesis
    6. H.B.Kagan, J.L.Namy. In Handbook on the Physics and Chemistry of the Rare Earth. (Eds K.A.Gschneider, L.Eyring). Elsevier, Amsterdam; New York, 1984. P. 525
    7. Электрохимия гибридообразующих интерметаллических соединений и сплавов
    8. Жекамухов А.Б “Исследование совместного электровосстановления гадолиния и криолита в галогенидных расплавах”
    9. Д.Браун. Галогениды лантаноидов и актиноидов. / Пер. с англ. к.х.н. С.С.Родина; Под ред. акад. И.В.Тананаева,. М.: Атомиздат, 1972
    10. Римская-Корсакова М.Н., Иванов В.М., Дубинин А.В. и др. Концентрирование лантанидов при анализе природных сульфидов // Вестник моск. ун-та. Химия. -2001.- Т42, №4
    11. Большая энциклопедия Кирилла и Мефодия 2001 5-е изд., Б.м. 2001. 62т.
    12. Советский энциклопедический словарь М.: «Советская энциклопедия», 1981. 1600с.
    13. Фигуровский Н.А. Открытие элементов и происхождение их названий М.: Наука, 1970
    14. Д.Н.Трифонов Д.И.Менделеев, Б.Браунер и «редкие земли»
  • 1339. Химия меди
    Информация пополнение в коллекции 09.12.2008

    Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической меди и SO2. Эту черновую медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака медь для восстановления растворённой в ней Cu2O "дразнят", погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкислённым H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную медь промывают водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники меди концентрируются в анодном шламе, из которого их извлекают специальной переработкой.

  • 1340. Химия наследственности. Нуклеиновые кислоты. ДНК. РНК. Репликация ДНК и передача наследственной информации
    Информация пополнение в коллекции 12.01.2009

    Методы фракционирования включают осаждение нейтральными солями, электрофорез, хроматографию на фосфате кальция и осаждение днгидрострептомицином. Недавно для фракционирования рибонуклеиновых кислот была использована фракционная диссоциация комплексов нуклеиновая кислота гистон, примененная ранее к дезоксинуклеиновым кислотам. Во всех фракциях отношение 6-амино- к 6-кетонуклеозидам было близко к единице. В некоторой степени фракционирование происходит при экстракции фенолом, возможно как результат дифференциального связывания нуклеиновых кислот с белками. Анионообменные целлюлозы, такие как ЭКТЕОЛА и ДЭАЭ, широко применяются в настоящее время для фракционирования не только рибонуклеиновых кислот, включая специфичные для аминокислот транспортные РНК, но и рибонуклеопротеидов и даже вирусных препаратов. Для элюирования обычно используют растворы нейтральных или близких к нейтральным солеи. Поразительной особенностью метода является способность этих ионообменников к разделению очень широкого спектра веществ, начиная от изомеров мононуклеотидов и олигонуклеотидов с различной длиной цепи или различного состава и кончая полинуклеотидами чрезвычайно высокого молекулярного веса. Опубликовано сообщение о разделении на колонках из ДЭАЭ-декстрана РНК, меченной валином, от немеченой акцепторной РНК. Для фракционирования рибонуклеиновых кислот были также применены модифицированные ионообменные целлюлозы, в которых к целлюлозе с помощью эпихлоргидрина присоединены нуклеозиды (вместо триэтаноламина), особенно аденозин и гуанозин. Подобное использование ЭКТЕОЛА-целлюлозы для фракционирования или выделения информационной РНК, связанной в данный момент с ДНК, основано на способности к специфическому образованию водородных связей: ЭКТЕОЛА связывает денатурированную ДНК данного организма (для элюирования ДНК необходим растворитель чрезвычайно высокой ионной силы), а информационная РНК элюируется растворами понижающейся ионной силы. Посредством хроматографии на трет-аминоалкилированном крахмале транспортная рибонуклеиновая кислота была разделена на фракции на основании повышенного сродства к тирозину и лейцину. Хроматография на оксиапатите дает хорошее разделение рибонуклеиновых кислот, специфичных для валина и фенилаланина.