Физика

  • 2401. Симметрия в физике
    Реферат пополнение в коллекции 09.12.2008

    Однажды в газете я прочитал сообщение о катастрофе самолета, причиной гибели которого было нарушение симметрии в конструкции, всего на 1о. Меня заинтересовала связь симметрии с другими науками, особенно с физикой. Хотелось узнать больше. И оказалось, что по данной теме существует богатейший материал, который я с удовольствием читал, изучал, восхищался. В своем реферате тщательно подбирал сведения, показывающие связь симметрии и физики. Физика намечает пути к пониманию единства, симметрии, динамики явлений природы, она старается нарисовать, по возможности, точную картину мира, выясняет, какие возможные геометрические понятия осуществляются в нашем мире. Самым важным понятием для изучения окружающего мира является симметрия. Идею симметрии подсказывает сама природа. Любопытство, желание узнать, как устроена природа всё это побудило меня к изучению данной темы. Что же такое теоретическая физика, как работают физики-теоретики? Как они изучают природу с помощью бумаги и карандаша, выводя новые соотношения, опираясь на ранее найденные экспериментально и теоретически законы природы. Какую роль играет симметрия.

  • 2402. Симметрия, Вселенная, Мироздание
    Информация пополнение в коллекции 24.06.2010
  • 2403. Синергетика как наука о самоорганизации
    Информация пополнение в коллекции 09.12.2008

    Некоторые математики склонны рассматривать весь круг проблем с точки зрения структурной устойчивости. Все перечисленные разделы науки весьма важны для понимания образования макроскопических структур образования в процессе самоорганизации, но каждый из них упускает из виду нечто одинаково существенное. Укажу лишь некоторые из пробелов. Мир - не лазер. В точках бифуркации решающее значение имеют флюктуации, т. е. стохастические процессы. Неравновесные фазовые переходы обладают некоторыми особенностями, отличными от обычных фазовых переходов, например чувствительны к конечным размерам образцов, форме границ и т.п. В равновесной статистической механике не существуют самоподдерживающиеся колебания. В равновесной термодинамике широко используются такие понятия, как энтропия, производство энтропии и т.д., неадекватные при рассмотрении неравновесных фазовых переходов. Теория катастроф основана на использовании некоторых потенциальных функций, не существующих для систем, находящихся в состояниях, далеких от теплового равновесия. Теория диссипативных структур. Бельгийская школа. И. Пригожина развивает термодинамический подход к самоорганизации. Основное понятие синергетики Хакена (понятие структуры как состояния, возникающего результате когерентного (согласованного) поведения большого числа частиц) бельгийская школа заменяет более специальным понятием диссипативной структуры. В открытых системах, обменивающихся с окружающей средой потоками вещества или энергии, однородное состояние равновесия может терять устойчивость и необратимо переходить в неоднородное стационарное состояние, устойчивое относительно малых возмущений. Такие стационарные состояния получили название диссипативных структур. Примером диссипативных структур могут служить колебания в модели Лефевра-Николиса-При- гожина (так называемом брюсселяторе).

  • 2404. Синтез голографического изображения с помощью компьютера
    Курсовой проект пополнение в коллекции 09.12.2008

    Рассмотрим более подробно процедуру получения цифровой голограммы. Сделаем это на примере голограммы Фурье. Как и всякие другие цифровые модели, цифровые модели голограмм воспроизводят процесс лишь приближенно, однако наиболее существенные свойства, подлежащие исследованию, представляются четко выделенными, в явном виде, что часто нельзя сделать в реальном процессе. Одно из основных приближений связано с переходом от непрерывных величин к дискретным, с которыми работает ЭВМ. Этот переход, уменьшая точность результатов, в то же время не вносит принципиальных изменений в процесс, так как с уменьшением шага дискретизации модель все более приближается к непрерывной. Степень такого приближения ограничена лишь возможностями ЭВМ. Кроме того, есть разумный предел плотности дискретизации, определяемый разрешающей способностью оптических элементов и фотоматериалов, участвующих в голографическом процессе. Этот предел для функций с ограниченным спектром определяется известной специалистам теоремой Котельникова, из которой следует, что если функция имеет спектр, ограниченный частотой f0, то она может быть представлена с большой точностью в точках xm, отстоящих одна от другой на расстоянии. Теорема Котельникова легко распространяется на двумерные функции. В этом случае отсчеты берут в узлах прямоугольной сетки с размерами ячеек

  • 2405. Синтез лёгких ядер (дефект массы) и Парадокс моделей вселенной
    Информация пополнение в коллекции 09.12.2008

    Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Модель А. Эйнштейна носит стационарный характер, поскольку метрика пространства рассматривается как независимая от времени. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

  • 2406. Синтез лёгких ядер (дефект массы) и Парадокс моделей вселенной.
    Информация пополнение в коллекции 12.01.2009

    Современная релятивистская космология строит модели Вселенной, отталкиваясь от основного уравнения тяготения, введенного А. Эйнштейном в общей теории относительности. Уравнение тяготения Эйнштейна имеет не одно, а множество решений, чем и обусловлено наличие многих космологических моделей Вселенной. Первая модель была разработана самим А. Эйнштейном в 1917 г. Он отбросил постулаты ньютоновской космологии об абсолютности и бесконечности пространства и времени. В соответствии с космологической моделью Вселенной А. Эйнштейна мировое пространство однородно и изотропно, материя в среднем распределена в ней равномерно, гравитационное притяжение масс компенсируется универсальным космологическим отталкиванием. Модель А. Эйнштейна носит стационарный характер, поскольку метрика пространства рассматривается как независимая от времени. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.

  • 2407. Синтез наноразмерных структур металлов электроразрядным методом
    Информация пополнение в коллекции 03.07.2010

  • 2408. Синтез системы подчиненного управления электропривода постоянного тока
    Дипломная работа пополнение в коллекции 19.06.2011

    Все задачи, решаемые в ТАУ, можно объединить в два больших класса: задачи анализа и задачи синтеза (проектирования). К задачам анализа относятся: определение устойчивости, расчет точности систем в различных установившихся режимах, построение кривых переходных процессов, опенка качества работы системы по тем или иным критериям. Синтез является важнейшим этапом проектирования и конструирования систем управления. В общем случае при проектировании систем необходимо определить алгоритмическую и функциональную структуру, т.е. решить задачу полного синтеза. Алгоритмическую структуру системы (или ее части) находят при помощи математических методов и на основании требования, записанных в четкой математической форме. Поэтому процедуру отыскания алгоритмической структуры часто называют теоретическим синтезом или аналитическим конструированием системы управления. Синтез функциональной структуры или технический синтез заключается в выборе конкретных элементов с учетом их физической природы и согласования статических и энергетических характеристик смежных элементов. Этот этап проектирования не имеет строгой математической основы и относится к области инженерного искусства. Процессы определения алгоритмической и функциональной структур тесно переплетаются друг с другом. Нередко их приходится выполнять по несколько раз, чередуя между собой. Окончательное решение о структуре системы принимается, как правило, на основе компромисса между точностью и качеством, простотой и надежностью и другими показателями, т.е. синтез - многовариантный процесс. Заключительным этапом проектирования систем управления является параметрическая оптимизация- расчет настроечных параметров выбранного регулятора и корректирующих устройств синтезируемой части. После решения задачи синтеза обычно выполняют анализ синтезируемой системы: обладает ли вновь созданная система необходимыми показателями точности, устойчивости и качества. Если исходные требования выполняются не в полной мере, то уточняется и корректируется синтезируемая часть и вновь выполняется процедура анализа. На всех этапах синтеза и анализа целесообразно применение аналоговых и цифровых вычислительных машин (ВМ). Моделирование системы на ВМ позволяет исследовать большое количество вариантов структур и параметров и тем самым существенно ускорить решение задач синтеза.

  • 2409. Синтез схем управления по заданному алгоритму работы механизма
    Дипломная работа пополнение в коллекции 17.02.2012

    Расчетно-графическая работа выполнена на тему: «Синтез схем управления по заданному алгоритму работы механизма». Синтез схемы управления начинается с составления графа функционирования алгоритма работы механизма. Для каждой функции составляем матрицу Карно, которая отражает изменения состояния логической функции. Эта методика имеет весьма важный практический смысл, так как простая схема обычно является более экономичной. После расчетов и составления схемы производим проверку на работоспособность. Чем подтверждаем правильность выполнения расчетно-графической работы.

  • 2410. Синхронизация как механизм самоорганизации системы связанных осцилляторов
    Курсовой проект пополнение в коллекции 12.06.2006

    В дискретной цепочке граница между двумя кластерами есть граница между двумя осцилляторами, имеющими разные частоты. Это просто означает, что они не захвачены: каждый колеблется со своей частотой. В отличие от этого, если в сплошной среде два осциллятора в двух пространственных точках имеют разные частоты, то между ними должен быть непрерывный переход. На первый взгляд, можно просто провести непрерывный профиль частот, соединяющий эти точки. Более детальное рассмотрение показывает, что это невозможно. Действительно, разные частоты отвечают разным скоростям вращения фазы. Поэтому разность фаз между точками, принадлежащими к двум кластерам, растет во времени со скоростью, пропорциональной разности частот. Следовательно, профиль фазы становится все более наклонным. С другой стороны, непрерывный крутой профиль фазы означает, что в среде образуются волновые структуры с все меньшей и меньшей длиной волны. Рост разности фаз между кластерами приводит к укорочению длины волны со временем. Ясно, что этот процесс долго продолжаться не может и действительно, среда находит выход из этой ситуации. Увеличивающийся градиент фазы уменьшается за счет пространственно-временного дефекта. Дефект образуется, когда амплитуда колебаний обращается в ноль, он позволяет сохранить градиент фазы конечным.

  • 2411. Синхронные машины. Машины постоянного тока
    Методическое пособие пополнение в коллекции 21.12.2009

    Так как при снятии индукционной нагрузочной характеристики в машине имеется только продольная составляющая м. д. с. Fаd реакции якоря, то, как следует из векторной диаграммы (рис.130, б), результирующая м. д. с. и напряжение машины Ù = E0jIaxadjJaxsa = EjIaxsa. Точка А кривой 2 соответствует режиму короткого замыкания, т.е. значению U = 0 при Iк = Iном. Треугольник ABC называют реактивным или характеристическим треугольником; его горизонтальный катет СА соответствует току возбуждения Iв.к, компенсирующему размагничивающее действие реакции якоря Fad ном, а вертикальный катет ВС-э. д. с, необходимой для компенсации падения напряжения Ia номxsa при номинальном токе якоря. Для любой другой точки нагрузочной характеристики при ? = 90° составляющая тока возбуждения, компенсирующая размагничивающее действие реакции якоря, останется неизменной, так как величина тока якоря постоянна. Неизменным останется и падение напряжения Ia номxsa. Следовательно, нагрузочную характеристику можно получить как след вершины А реактивного треугольника при перемещении его так, чтобы вершина В скользила по характеристике холостого хода, а стороны треугольника оставались бы параллельными соответствующим сторонам первоначально построенного треугольника. В этом легко убедиться, рассматривая точку А' и треугольник А'В'С' (рис.1.30) при номинальном напряжении Uном. В этом режиме э.д.с.

  • 2412. Синхронный двигатель
    Реферат пополнение в коллекции 28.01.2010

    плоскими, и все физические величины в структуре, в частности, концентрации носителей заряда, зависят только от одной продольной координаты x, что соответствует бесконечным поперечным размерам структуры. С учетом того, что в реальной структуре транзистора (см. рис.3.1) ширина базы значительно меньше поперечных размеров переходов, плоская одномерная модель достаточно хорошо отражает процессы, протекающие в транзисторе. Рассмотрим вначале статическую ситуацию, при которой на переходы транзистора от внешних источников питания подаются постоянные напряжения uЭБ и uКБ см. рис.3.4. Заметим, что приведенный на рисунке транзистор включен по схеме с общей базой. Напряжения uЭБ <0 и uКБ >0 обеспечивают открытое состояние эмиттерного перехода и закрытое состояние коллекторного перехода, что соответствует активному режиму работы транзистора. Через открытый эмиттерный переход протекают основные носители заряда. Как уже отмечалось в п.3.1, из-за резкой асимметрии эмиттерного перехода инжекцию через него можно считать односторонней, то есть достаточно рассматривать только поток электронов, инжектируемых из эмиттера в базу см. рис.3.4. Этот поток очень сильно зависит от напряжения на эмиттерном переходе uЭБ, экспоненциально возрастая с увеличением ? uЭБ?. Инжектированные в базу электроны оказываются в ней избыточными (неравновесными) неосновными носителями заряда. Вследствие диффузии они движутся через базу к коллекторному переходу, частично рекомбинируя с основными носителями дырками. Достигнувшие коллекторного перехода электроны экстрагируются полем закрытого коллекторного перехода в коллектор. В связи с тем, что в коллекторном переходе отсутствует потенциальный барьер для электронов,

  • 2413. Система автоматического регулирования скорости вращения двигателя постоянного тока
    Дипломная работа пополнение в коллекции 21.01.2012

    Принципиальная электрическая схема системы автоматического регулирования скорости вращения двигателя постоянного тока приведена на рис. 1. Такие системы электропривода широко используются в станках с ЧПУ, приводах вращения радиолокационных антенн и других устройствах. Исполнительный двигатель постоянного тока (мощностью от сотен ватт до нескольких киловатт) питается от управляемого тиристорного преобразователя. Частота вращения измеряется тахогенератором постоянного тока с возбуждением от постоянных магнитов.

  • 2414. Система автоматичного регулювання асинхронного електродвигуна з фазним ротором
    Курсовой проект пополнение в коллекции 25.12.2010

    У сталому режимі при рівності частоти обертання ? ротора двигуна заданої ? з , напруги Uз ,Uос ,Uд взаємно компенсуються й вихідну напругу UУ на ДУ дорівнює 0. При відхиленні частоти обертання від заданої, наприклад, через зміну моменту на валу ДВС Мс, напруга на виході датчика Uд змінюється, з'явиться різниця напруг у результаті чого на виході ДУ з'явиться напруга UУ відмінне від нуля. Напруга UУ подається на електродвигун. Двигун через редуктор змінює положення рідинного опору, тим самим, збільшуючи або зменшуючи частоту обертання вала ротора, повертаючи її до заданого значення. Одночасно вихідний вал редуктора переміщає рухливий контакт датчика місцевого зворотного зв'язку. Вихідна напруга Uос якого подається на ДУ . За рахунок місцевого зворотного зв'язку забезпечується пропорційна залежність між напругою Uд і кутом повороту вала редуктора.

  • 2415. Система воздухоснабжения промышленного предприятия
    Курсовой проект пополнение в коллекции 22.04.2010

    ФорматЗонаПоз.ОбозначениеНаименованиеПриме-чаниеОсновное оборудование1ВПЗ-20/9 УХЛ4Компрессор воздушный поршневой Q=0,367 м3/с(22 м3/мин)Рабс=0,9 МПа(9 кгс/см2)72ХРПУ 4 ТУ26-411-75Холодильник промежуточный73ДСК-12-24-12УХЛ4Электродвигатель синхронныйТУ 16.512.050-75N = 132 кВтV = 380В n = 500 об/мин73ХРК 9/8Холодильник концевойРабс=0,88 МПа(9 кгс/см2)4Возбудительный агрегат,в том числе:В18-2У3а) генератор N = 4.5 кВтn = 1500 об/мин74А 112М 4УЗб) асинхронный двигательN = 5.5 кВтn = 1500 об/мин7Р3В-11 БУ3в) регулятор возбуждения 75ХРК-9/8 У4Холодильник концевойРабс=0,9 МПа(9 кгс/см2)76В-3.2ВоздухосборникГОСТ 9028-76V =3.2 м3Рабс=0,88 МПа(9 кгс/см2)77Щит управления78ПУ7501-73Б3АПанель управления791ШР-2ШРШкаф распределительный210Центральный щит компрессорной11ГОСТ 7413-80Кран подвесной ручнойоднобалочный Q = 20кН;Lк=4.5м l=0,6мполна длина крана L=5.7м;112ОВПУ-250Огнетушитель воздушно-пенный ТУ22-2336-71Р=0,98 МПаQ = 0.25м3 (250 л)1Нестандартное оборудование13ГФ.00.00.00.000 Фильтр воздушныйс глушителем714ГШС 60.00.000Глушитель шума стравливания1производительностью 60м3/мин115УО.00.000. Э4Установка для очистки трасссжатого воздуха216БП.00.000. Э4Бак продувочный117ВП.00.000. Э4Ванна для промывки ячеек фильтров218ВЗ.00.000. Э4Ванна для зарядки ячеек фильтровV =0.22 м3119СО.00.000. Э4Стол для отстоя ячеек фильтров220БР.00.000. Э4Бак расходный для масла V=50л2Прочее оборудование21МС.00.000Маслосборник122ОМ.00.000Опора под маслобаки123Стеллаж для запчастей124Верстак с тисками1

  • 2416. Система зовнішнього освітлення футбольного стадіону розміром: довжина 110 м, ширина–60 м
    Курсовой проект пополнение в коллекции 03.07.2010

    Для зменшення споживання електроенергії в проектній документації освітлювальної установки необхідно передбачити контроль справності освітлювальної апаратури, зокрема баластних компенсуючих конденсаторів ПРА. У випадку пробою баластного конденсатора в індуктивно-ємкісній ПРА світильників із розщепленою фазою (дво-, чотири-шестилампові світильники) реактивний струм у витку з пробитим конденсатором залишається незмінним за величиною, але змінює свій характер з ємкісного на індуктивний. У результаті реактивний струм світильника зростає приблизно в чотири рази і відповідно зростають втрати енергії в електричній мережі. У випадку пробою одного з двох послідовно з'єднаних компенсуючих конденсаторів, приєднаних паралельно до мережевих виводів світильника, реактивний струм у витку зростає вдвічі, що також призводить до збільшення втрат енергії в мережі.

  • 2417. Система измерения сверхмалых масс микрообъектов
    Дипломная работа пополнение в коллекции 11.06.2011
  • 2418. Система маслоснабжения ГТУ
    Информация пополнение в коллекции 16.08.2011

    Из нагнетающей магистрали масло проводится так же и командному агрегату 5, в котором оно используется в качестве рабочей жидкости. Из командного агрегата масло сливается в нижнюю коробку приводов двигателя. Из подшипниковых узлов двигателя и нижней коробки приводов через магнитные сигнализаторы стружки 6, защитные фильтры 7, масло откачивается ступенями маслонасоса откачки 8 и откачивающей ступенью основного маслонасоса 2. Далее, масло по трубопроводам поступает в воздухоотделитель 9 с фильтром-сигнализатором, после которого, через фильтр 10 по трубопроводам направляется в аппарат воздушного охлаждения масла (АВОМ) 11, где охлаждается воздухом, принудительно подаваемым вентилятором (не показан).

  • 2419. Система отопления в зданиях и сооружениях
    Информация пополнение в коллекции 16.09.2010

    На цели отопления и горячего водоснабжения в Республике Беларусь расходуется 40% от общего потребления топлива. Потенциал энергосбережения, по оценкам отечественных и зарубежных экспертов, в системах теплоснабжения республики составляет около 50%. Следовательно, за счет энергосберегающих мероприятий можно снизить потребление топлива на нужды теплоснабжения на 20% от общего потребления республикой. Именно поэтому одной из приоритетных задач действующей Государственной программы «Энергосбережение» для увеличения эффективности использования теплоты в системах отопления зданий необходимо внедрение системы регулирования отпуска тепла. Необходимость оперативного определения расхода теплоты и теплопотерь с особой остротой выявилась в последнее время в связи с требованием экономии топливно-энергетических ресурсов.

  • 2420. Система тепло- и энергоснабжения промышленного предприятия
    Дипломная работа пополнение в коллекции 19.04.2010

    В процессе подготовки оператор обязан:

    1. произвести осмотр котла и убедиться в отсутствии опасных повреждений, а также в хорошей очистке и отсутствии в котле людей и посторонних предметов. После осмотра закрыть лазы и люки;
    2. осмотреть состояние обмуровки и футеровки, убедиться в отсутствии в них выпучин, трещин, непромазаных швов, а также удостовериться в надежности футеровки по огневой линии и защите барабанов от воздействия газов с высокой температурой;
    3. убедиться, что сняты заглушки перед и после предохранительных клапанов и заглушки отсоединявшие котел от общих трубопроводов (паропроводы, газопроводы, питательные, спускные и продувочные линии);
    4. проверить исправность оборудования для сжигания газообразного топлива, запорных и регулирующих устройств у котлов ДКВР-20/13, работающих на газообразном топливе;
    5. заполнить экономайзер водой, установленного водным режимом качества, при этом предварительно надо убедиться в исправности и правильном положении арматуры;
    6. открыть установленный на экономайзере воздушный клапан (для удаления воздуха) и после появления из клапана воды закрыть его;
    7. заполнить (через экономайзер) котел питательной водой установленного водным режимом качества до отметки низшего уровня, при этом необходимо убедиться в исправности и правильном положении арматуры, открыть один из предохранительных клапанов для выпуска воздуха;
    8. проверить исправность контрольно-измерительных приборов и устройств автоматического регулирования, питательных устройств, дымососов и вентиляторов, а также наличие естественной тяги;
    9. проверить набивки сальников вентилей, задвижек, насосов, водоуказательных колонок и т.п., наличие смазки в масленках насосов и тягодутьевых устройств.