Лекция Модели образования Вселенной

Вид материалаЛекция

Содержание


Фундаментальные константы и антропный принцип.
Образование и эволюция звезд.
Эволюция Солнечной системы.
Эволюция Земли.
Подобный материал:




Лекция 9.

Модели образования Вселенной.

Первыми моделями Вселенной были модели Солнечной системы, в центре которой была неподвижная Земля, неподвижная сфера со звездами и подвижные пять планет, Солнце и Луна. За последней сферой располагался ад и рай (система Птолемея). Гелиоцетрическая система была разработана Н.Коперником (1514 г.). В 18 веке с появлением законов Ньютона в небесной механике возникло представление о бесконечной Вселенной, при этом пространство рассматривалось как однородное и изотропное, а время – как абсолютное и однородное. В 19 веке было развито представление о Вселенной, как бесконечной в пространстве, но неизменной во времени. Это была стационарная космологическая модель.

Первая современная космологическая модель была предложена Эйнштейном в 1917 г., как следствие общей теории относительности. В ОТО и СТО Эйнштейн предположил, что пространство и время не абсолютны, а относительны и связаны между собой.

В 1922 г. российский математик А.А.Фридман показал, что из уравнений ОТО следует нестационарность, т.е. развитие Вселенной: искривленное пространство не может быть стационарным, оно должно расширяться или сжиматься. Эйнштейн вынужден был публично согласиться с выводами Фридмана, хотя первоначально считал, что Вселенная статична.

Следующим этапом стало создание теории расширяющейся Вселенной. Их астрономических наблюдений было установлено, что кроме нашей Галактики (звездного скопления под названием «Млечный путь») существует огромное количество других галактик.

По смещению видимой части ЭМ излучения к красному или фиолетовому концу спектра можно установить относительное движение источника света и наблюдателя (эффект Доплера). Для всех наблюдаемых галактик наблюдается «красное смещение», из чего следует, что они удаляются от нас. Именно это явление в 1929 г. впервые наблюдал американский астроном Эдвин Пауэлл Хаббл (1889-195), чем и подтвердил расширение Вселенной. Согласно законы Хаббла скорость разбегания галактик V=H r, где r – расстояние до галактики, Н – постоянная Хаббла. Значение постоянной Н позволяет установить, как давно начали разбегаться галактики. Расчеты показали, что возраст Вселенной примерно 13.7 млрд. лет.

В настоящее время наиболее точные асторономические наблюдения, проведенные с помощью космического телескопа им.Хаббла, обращающегося по орбите вокруг Земли, позволили определить постоянную Хаббла в интервале Н=55…75 км/(с·Мпк).

Главным методом измерения внегалактических расстояний является метод «стандартной свечи», заключающийся в следующем: выбирается класс объектов с известной мощностью излучения (светимостью). С помощью астрономических инструментов измеряется поток излучения, который ослабляется пропорционально квадрату расстояния j=L/(4pr2). Отсюда вычисляется расстояние до объекта.
  • 1 парсек = 3.26 светового года (расстояние, с которого радиус земной орбиты виден под углом 1’’)
  • 1 световой год = с · 1год = 9.46 ·1012 км» 1013 км
  • 1 астрономическая единица = 149600 тыс км – среднее расстояние от Земли до Солнца


Наиболее разработанная к настоящему времени космологическая теория – теория Большого Взрыва, предложенная в 1948 г. американским физиком Г.Гамовым. В основе теории БВ лежит предположение о том, что физическая Вселенная образовалась в результате гигантского взрыва, в момент которого все вещество и вся энергия современной Вселенной были сконцентрированы в одном сгустке с плотностью свыше 1025 г/см3 и температурой свыше 1016 К. Теория БВ описывает эволюцию Вселенной, начиная с 10-35 с после ее образования. До этого момента теоретическое описание эволюции Вселенной не является завершенным. Одна из теорий, теория инфляции, описывает интервал времени от 10-43 до 10-35 с. предполагается, что до этого физический вакуум находился в состоянии, которое называется «ложным вакуумом». Он обладает ненулевой плотностью энергии, нестабилен и может самопроизвольно переходить в обычный вакуум за счет туннельного эффекта. Благодаря «подбарьерному просачиванию» в среде ложного вакуума возникают области обычного вакуума, которые называются пузырями. Одним из таких пузырей и явился зародышем нашей Вселенной. Из других пузырей появились другие вселенные, не связанные с нашей причинно-следственными связями и потому для нас ненаблюдаемые.

Сочетание модели инфляции и теории БВ называют обобщенной моделью эволюции Вселенной или стандартной космологической моделью.

Итак, переход ложного вакуума с положительной плотностью энергии в обычный вакуум с нулевой плотностью энергии привел к разогреванию материи до 1032 К – модель горячей вселенной. Из-за очень быстрого расширения на стадии инфляции процесс не мог протекать равновесно. Неизбежные флуктуации привели к небольшим (0.001%) неоднородностям, которые затем преобразовались в галактики и другие крупномасштабные скопления материи. С другой стороны, нет оснований полагать, что неоднородности образовывались преимущественно в некоторых частях пузыря или по выделенным направлениям. Поэтому Вселенная в больших своих фрагментах является однородной и изотропной, во всех частях Вселенной все явления и процессы подчиняются единым законам.

В период с 10-43 до 10-35 с материя существовала в виде излучения и сверхгорячей плазмы из множества рождающихся и аннигилирующих частиц и антицастиц. Для эволюции нашей Вселенной оказалось существенным, что число частиц и античастиц различалось примерно на 10-7% в пользу частиц. Поэтому в процессе последующей аннигиляции античастицы исчезли полностью, а весьма малый реликтовый остаток вещества (10-7%) образует нашу современную Вселенную.

До момента инфляции существовал, вероятно, только один тип фундаментальных взаимодействий – Суперсила. Непосредственно до 10-43 с отделилась гравитация. В период завершения инфляции

(10-36 – 10-35 с) при температуре 1028 К от великого объединения отделилось ядерное взаимодействие. Примерно через 10-10 с электрослабое взаимодействие распалось на слабое и электромагнитное. С этого момента до наших дней в природе проявляются все четыре фундаментальных взаимодействия.

Период с 10-35 до 10-4 с называется эрой адронов. К концу этой эры кварки объединились в адроны. Возникли и лептоны, но температуры еще слишком высоки (1028 – 1012 К), нуклоны не могут образовать устойчивые ядра и удержать электроны в атомах.

В период с 10-4 до 10 с Вселенная остывает до 1010 К и наступает эра лептонов. Аннигиляция между электронами и позитронами завершилась с избытком электронов. С участие лептонов идут реакции между протонами и нейтронами.

Далее наступает эра фотонов, длившаяся от 10 с до 106 лет. Температура убывает от 1010 до 4000 К. Основная энергия Вселенной приходится на фотоны, т.к. уже прошла аннигиляция частиц и античастиц.

При охлаждении Вселенной до 109 К (300 с) возникли условия, при которых за счет объединения протонов и нейтронов стали образовываться изотопы водорода и гелия. К моменту 10000 лет нейтроны были полностью израсходованы на образование гелия (25%), оставшиеся протоны проявились в дальнейшем как ядра водорода (75%). Это соотношение примерно сохраняется до наших дней.

После образования ядер легких элементов вещество еще долго представляло собой плазму. После снижения температуры до 4000К электроны стали удерживаться вблизи ядер, образуя атомы водорода и гелия. Произошло разделение вещества и излучения. Излучение стало распространяться по Вселенной свободно, охлаждаясь по мере расширения Вселенной. В настоящее время излучение имеет температуру порядка 3К. что соответствует микроволновому радиоизлучению. Это излучение и называется реликтовым. Экспериментально обнаруженное реликтовое излучение имеет температуру 2.7 К.

Через 106 лет после начала эволюции Вселенной наступила эра звезд, или эра вещества, которая продолжается и в наше время. Постепенно под действием гравитации первичные неоднородности в распределении вещества превратились в огромные газовые сгущения, которые затем разделились на галактики. Дальнейшее дробление привело к распаду галактик на протозвезды, из которых затем образовались звезды.
  • Звезда – гигантский плазменный шар, длительно находящийся в устойчивом состоянии благодаря гидродинамическому и тепловому равновесиям.
  • Галактики – гигантские (до сотен млрд звезд) звездные системы, в которых звезды связаны друг с другом силами гравитации.
  • Метагалактика – совокупность галактик, движущихся в видимой нами части Вселенной.

В настоящее время обнаружено более миллиарда галактик, каждая из которых имеет от нескольких миллионов до многих тысяч миллиардов звезд. Наша галактика Млечный путь содержит 1011 звезд, сосредоточенных в объеме, имеющем форму диска диаметром около 100 тыс. св. лет, а толщина – 1500 св. лет., со спиральными рукавами. Солнце расположено на краю спирального рукава, называемого Орион на расстоянии около 30 тыс. св. лет от ядра галактики.

Спиральные галактики – один из основных видов галактик (до 50%). Звезды и межзвездное вещество спиральных галактик вращаются вокруг ядра. Солнце за время своей эволюции ( 5 млрд лет) совершила около 25 оборотов вокруг ядра галактики со скоростью 250 км/с.

Ближайшие к нам галактики – Магеллановы Облака (расстояние – 200 тыс. св.лет) и Туманность Андромеды (1800 тыс. св.лет).

Отметим, что современная теория эволюции Вселенной дает ответы далеко не на все вопросы, например неясен пока характер дальнейшей эволюции Вселенной. Теория допускает два сценария: бесконечное расширение (модель открытой Вселенной) и смена расширения сжатием, возвращение в сверхплотное и сверхгорячее состояние, после чего следует цикл нового расширения (модель пульсирующей Вселенной). Реализация того или иного варианта зависит от средней плотности вещества во Вселенной. Если плотность не превышает некоторого критического значения, то реализуется модель открытой Вселенной, в противном случае Вселенная пульсирует. Современные данные свидетельствуют в пользу модели открытой Вселенной, однако возможно, что открытие новых космических объектов изменит ситуацию.

Легче всего оценить плотность светящегося вещества, которая составляет 0.5% критической. Однако во Вселенной есть и несветящееся, невидимое вещество, называемое темной энергией или темной массой. Самый первый довод в пользу существования темной материи, основанный на изучении движения галактик, привел швейцарский астроном Фриц Цвикки (30-е годы ХХ века) – массы галактик недостаточно, чтобы удержать их от разлета. Если бы не было скрытого вещества, составляющего более 90% галактик, то они распались бы за несколько миллиардов лет, в то время их возраст составляет около 13 млрд лет.

В настоящее время считается, что большая часть невидимой материи существует в виде принципиально несветящегося вещества, состоящего из частиц, крайне слабо взаимодействующих с обычным веществом, светом и друг с другом (нейтрино). Наилучшее совпадение с данными наблюдений имеет космологическая модель, в которой плотность примерно равна критической, при этом на вакуум приходится 65%, на холодную темную материю – 30%, на барионную скрытую массу – 5%, на нейтрино и видимое вещество – по 0.5%.


^ Фундаментальные константы и антропный принцип.

Во всех разделах физики приходится иметь дело с постоянными величинами, т.н. константами. Существует ограниченный набор физических постоянных, связанных с важнейшими физическими теориями, которые называются фундаментальными константами.

Среди фундаментальных констант можно условно выделить мировые,

электромагнитные, атомные и физико-химические. Фундаментальные

константы не выводятся из физических теорий, а определяются экспериментально. В современном естествознании считается, что мировые константы стабильны, начиная со времени 10-35 начиная с рождения Вселенной.


Константа

Обозначение

Численное значение

Единицы измерения

Скорость света в вакууме

с

2.998 108

м/с

Гравитационная постоянная

G

6.672 10-11

Н м2/кг2

Постоянная Планка

h

6.62676 10-34

Дж с

Масса электрона

me

9.11 10-31

кг

Заряд электрона

e

1.60 10-19

Кл

Масса протона

mp

1.67 10-27

кг



В таблице приведены постоянные, которые предлагал считать фундаментальными А.Эйнштейн.

М. Планк предлагал добавить к первым трем фундаментальным константам постоянную Больцмана (к=1.38 1023 Дж/(К моль), т.к. она устанавливает связь между микроскопическими характеристиками частицы и макроскопическим состоянием системы.

Установлено, что существование основных структурных элементов материи (атомных ядер, звезд, галактик) во Вселенной связано возможно лишь в очень узком диапазоне численных значений фундаментальных констант. Расчеты показали, что их малые изменения на ранней стадии формирования Вселенной могли бы привести к формированию качественно иного мира, в частности стало бы невозможно образование макроскопических структур, а следовательно и образование высокоорганизованной живой матери. Вопрос о причинах попадания численных значений мировых констант в узкий диапазон, обеспечивающий возникновение разумной жизни, нашел отражение в антропном принципе, предложенном Г.Идлисом в 1958 г. И Б.Картером с 1974 г. Антропный принцип сформулирован в слабом и сильном вариантах:

Слабый антропный принцип – на свойства Вселенной накладывает ограничение наличие разумной жизни;

Сильный антропный принцип – свойства Вселенной должны быть такими, чтобы в ней обязательно существовала жизнь.

Антропный принцип – пример взаимозависимости фундаментальных вопросы естествознания и мировоззренческих вопросов. В тех областях, где недостаточность знания существует принципиально, большую роль играют вненаучные факторы, эстетические предпочтения или религиозное мировоззрение. Антропный принцип признает некий высший порядок, выбравший реализованный вариант эволюции Вселенной.

Антропный принцип не отвергает также возможность существования других Вселенных. Предполагая, что Вселенная однородна и изотропна в больших масштабах и применяя антропный принцип, можно прийти к выводу о закономерности возникновения и широком распространении жизни и Разума во Вселенной. Антропный принцип с точки зрения физики и философии отвергает возможность уникальности земной жизни.


^ Образование и эволюция звезд.

Современные методы изучения звезд и галактик показали, что почти все они состоят из водорода и гелия, причем лишь малая часть водорода и гелия содержится в звездах, а большая часть распределена в межзвездном пространстве. В зависимости от первоначального состава межзвездной пыли наблюдаются два типа звездных тел.

Большинство звезд состоит в основном из водорода (60…90%) и гелия (10…40%) и тяжелых элементов (0.1…3%). Такие звезды называются звездами населения 1. Тяжелые элементы образуются при вспышках т.н. новых звезд или при взрывах сверхновых. Наше Солнце с 74% водорода, 24% гелия и 2% тяжелых элементов есть обычная звезда населения 1.

Звезды населения 2 образуются в основном из первичного водорода и гелия и содержат очень мало тяжелых элементов.

В процесс конденсации межзвездной пыли сопровождается освобождением энергия частиц и соответствующим увеличением температуры. При температурах 107 К и плотности 100 г/см3 начинаются термоядерные реакции. В первой термоядерной реакции участвует лишь водород: происходит слияние двух протонов в результате слабых взаимодействий. После образования дейтерия начинаются еще две дополнительные реакции, конечным результатом которых является слияние четырех ядер атома водорода в ядро атома гелия. При этом выделяется 27 МэВ.

p + p  d + e+ + 

d + p  23He + 

23He + 23He 24He + p + p

Эта реакция называется протон-протонной цепочкой. Она является основным источником энергии Солнца. Солнце ежесекундно выделяет 4 1026 Вт.

Термоядерные реакции, протекающие внутри звезд, сопровождаются испусканием -квантов. ЭМ излучение обладает импульсом, т.е. оказывает радиационное давление. Когда давление, обусловленное гравитацией, уравновешивается радиационным давление, сжатие звезды прекращается.

Если в звезде имеется некоторое количество углерода, то может осуществляться еще одна цепочка реакций, в результате чего также происходит превращение четырех ядер водорода в гелий, а углерод служит катализатором. Т.к. в этой последовательности участвуют и образуются углерод и азот, то ее и называют углеродно-азотным циклом. Такие звезды более массивные и яркие, примером является Сириус, одна из самых ярких звезд Северного полушария.

За эволюцией звезд позволяют следить две основные характеристики: собственная светимость и цвет. На диаграмме зависимости светимости от цвета звезду можно изобразить точкой, которая движется по мере жизни и угасания звезды. Начальное положение звезды зависит от ее массы: более массивные оказываются более горячими и яркими, а менее массивные – холодными и тусклыми. Для стабильных звезд диаграмма светимость-цвет образует т.н. главную последовательность.

По мере уменьшения количества водорода внутри звезды она сжимается. Это приводит к увеличению температуры и началу выгорания гелия. При превращении гелия в углерод выделяется большое количество энергии, что приводит к увеличению радиационного давления. Внешние слои звезды расширяются. В результате чего температура падает, излучаемый свет становится более красным, и звезда смещается вправо от главной последовательности. Этот процесс расширения идет до тех пор, пока диаметр заезды не увеличится в 200-300 раз, и звезда становится красным гигантом.




Эволюция нашего Солнца к стадии красного гиганта приведет к тому, что оно сначала сожжет Земл. из-за огромного количества выделившейся энергии, а затем в результате расширения поглотит ее останки. По расчетам астрономов до этого момента пройдет около 5 млрд лет.

Время пребывания обычной звезды в стадии красного гиганта составляет около 107 лет. Достигнув на этой стадии максимальных размеров, звезда быстро смещается влево на диаграмме светимость-цвет. В этот период у большинства звезд нарушается равновесие, и они начинают пульсировать, изменяя свою светимость. Далее эволюция идет в зависимости от массы звезды. Если она меньше 1.4 солнечной массы («легкая» звезда), то израсходовав ядерное топливо, она охлаждается и в конце концов угасает. При этом она проходит через стадию неустойчивости, во время которой происходит периодическое возрастание светимости. Резкое возрастание светимости фиксируется как рождение новой звезды. Далее стадия «новой» звезды переходит в стадию белого карлика, затем, после дальнейшего охлаждения – в стадию красного карлика, и наконец – в черного карлика.



Эволюция звезды, масса которой больше 1.4 массы Солнца, кончается эффектным взрывом, и это считается рождением сверхновой звезды. После взрыва сверхновой возникают высокие давления и температуры, создаются условия для образования нейтронов. Поскольку для нейтроном электростатическое отталкивание отсутствует, под действием тяготения нейтронное вещество коллапсирует, образуя маленький сверхплотный шар. Плотность в нем столь велика, что распад нейтрона оказывается запрещенным. Такие звездные тела называются нейтронными звездами.

В 1968 г. были обнаружены объекты, являющиеся источником переменного радиоизлучения с частотой пульсации около 1 Гц. Они получили название пульсаров. Голд предложил модель, согласно которой пульсар – это вращающаяся нейтронная звезда. Время жизни пульсара 108 лет.

В начале 60-х годов были обнаружены радиоисточники, связанные с объектами голубого цвета, напоминающими звезды. Их назвали квазизвездами, или квазарами. Происхождение и строение квазаров в настоящее время неясно. Однако установлено, что для них характерно сильное красное смещение, следовательно можно предположить, что квазары – наиболее удаленные и быстро движущиеся объекты во вселенной.

Согласно современным представлениям до 90% вещества Вселенной находится в неизвестном состоянии, т.е. имеется «скрытая» от наблюдателя масса. Американский физик Уиллер в 1969 г. предложил термин черная дыра для космического объекта со скрытой массой. ЧД возникает в результате сжатия космического объекта, если его масса превышает массу Солнца в три раза. Сжатие такого объекта невозможно предотвратить никакими силами, и звезда превращается в ЧД с радиусом примерно 3 км. На границе ЧД вторая космическая скорость, необходимая для удаления от данного космического тела, равна скорости света. Это означает, что никакое природное явление или взаимодействие не может выйти за предела ЧД. У нее такое большое гравитационное поле, что даже ЭМ излучение не может ее покинуть.

Существование ЧД можно описать в рамках ОТО, позволяющей для любого объекта, имеющего массу рассчитать т.н. гравитационный радиус, или радиус сферы Шврцшильда, первым решившего уравнение Эйнштейна для сферически симметричного распределения масс. Так, гравитационный радиус Солнца равен примерно 3 км, а для Земли – примерно 1 см.

Наличие сильного гравитационного поля у ЧД приводит к тому, что время течет все медленнее и медленнее по мере приближения к ЧД. На расстоянии гравитационного радиуса время полностью останавливается с точки зрения удаленного наблюдателя, т.е. ЧД искривляет пространство и тормозит время. В этом смысле ОТО рассматривает ЧД как «кладбище» всего того, что она успела захватить.

В 1975 г. С.Хокинг показал, что гравитационное поле вблизи поверхности ЧД рождает из вакуума пары частиц, одна из которых захватывается ЧД, а другая улетает в окружающее пространство, т.е. получается, что ЧД может излучать частицы разных видов, т.е. ЧД постепенно рассеивается в космическом пространстве. Так происходит круговорот материи во Вселенной. Аннигиляция частиц и античастиц приводит к мощному -излучению, по которому можно обнаружить ЧД. Предполагается, что в центре Галактики находится ЧД массой в 106 масс Солнца.

^ Эволюция Солнечной системы.

О Солнечной системе достаточно много известно из астрономических наблюдений, астрофизических исследований, из сведений, собранных космическими аппаратами, а также полученных в результате исследования космических излучений и метеоритов, попадающих на Землю.

Солнечная система включает в себя центральное тело (Солнце), группу ближайших к нему планет (Меркурий, Венера, Земля, Марс), астероидный пояс из десятков тысяч более удаленных мелких планет (астероидов), группу внешних планет (Юпитер, Сатурн, Уран, Нептун), Плутон, который недавно был признан не планетой, а астероидом, около 90 спутников планет, неопределенного числа комет и межзвездную среду в виде плазмы, космической пыли, ЭМ излучения и потоков элементарных частиц. Кроме того открыто около 70 внесолнечных планет, которые относятся к другим системам, существенно отличающимся друг от друга.

Наше Солнце- типичная звезда-карлик спектрального класса G-2 – светящийся газовый шар, не имеющий четкой границы, плотность его убывает постепенно, но благодаря фотосфере создается иллюзия, что Солнце имеет поверхность. Химический состав: 90% водорода, 10% гелия, остальные элементы – менее 0.1% (по числу атомов). Источник солнечной энергии – термоядерные реакции. Энергия их недр переносится излучением, а в тонком внешнем слое – конвекцией. С конвективным движением связано существование т.н. солнечных пятен.

Регулярные наблюдения за пятнами на Солнце ведутся с 1610 г. – изобретения телескопа. Известны 11-летние циклы солнечной активности. Периоды высокой и низкой солнечной активности совпадают с изменением земного климата. За весь охваченный исследованиями период Солнце никогда не было таким активным, как за последние 60 лет.

Большая часть светового потока Солнца испускается фотосферой в виде ЭМ излучения видимого и инфракрасного диапазона. Над фотосферой расположена корона Солнца – самая нестабильная оболочка Солнца. Горячая плазма, истекающая из короны, формирует солнечный ветер – поток ионов (90% - протоны, 4% - альфа-частицы) и электронов. Скорость солнечного ветра 800-900 км/с. Солнечный ветер и магнитное поле заполняют собой всю солнечную систему. Земля и другие планеты находятся фактически в короне Солнца.

Существуют хорошо разработанные математизированные теории, описывающие движение тел Солнечной системы (космическая механика). В настоящее время наиболее изучены космические излучения и метеориты, падающие на Землю, сама Земля и ее спутник Луна. Суммарная масса планет составляет примерно 1/743 массы Солнца. Орбиты планет лежат примерно в одной плоскости. Все планеты кроме Венеры вращаются с запада на восток, Венера вращается в противоположном направлении. Планеты заметно отличаются по составу: гигантские внешние планеты содержат больше водорода, гелия, воды, метана, внутренние – больше тяжелых элементов. Как правило, по мере удаления от Солнца содержание компонент убывает по ряду: Fe, Ni  O, Si, Mg  H2O, CH4. Состав метеоритов отражает состав остальных тел Солнечной системы. В метеоритах обнаружено около 100 различных минералов, 80 из них встречается на Земле. Преобладают каменные метеориты.

Первые научные концепции возникновения и эволюции Земли возникли примерно 250 лет назад. Первая гипотеза связана с катастрофическим, одномоментным выбросом вещества из Солнца с образованием планет, связанное с критическим сближением Солнца и большой кометы (Ж.Л.Бюффон, 17 век). Вторая концепция предполагает длительное формирование Солнечной системы за счет процесса конденсации разреженной космической среды под действием сил гравитации (гипотеза И.Канта и М.Лапласа, 18 век). Современная космогоническая теория придерживается второй версии.

Наличие в составе тел Солнечной системы, помимо водорода и гелия, тяжелых элементов свидетельствует о том, что протопланетная среда возникла, по крайней мере, частично, в результате взрыва сверхновой. Первичная туманность, участвуя в общем вращении с Галактикой, обладает некоторым вращательным моментом, что препятствует ее сжатию до большой плотности в едином центре. Расчеты показали, что при определенных условиях вращения, фрагменты первичной туманности могут сжиматься до образования одиночных устойчивых звезд типа Солнца. В процессе эволюции каждой такой звезды вокруг нее формируется газопылевой диск. За примерно 106 лет центр диска превращается в относительно медленно вращающееся Солнце с массой 2 1030 кг, а быстро вращающаяся внешняя часть диска позднее превращается в систему планет, их спутников и астероидов с общей массой 0.1 массы Солнца. Близость состава тел солнечной системы, движение этих тел по схожим орбитам указывает на общность формирования всей Солнечной системы.

Астероиды и кометы представляют собой остатки роя допланетных тел. Крупнейшие астероиды (> 100 км) образовались еще до образования планет, а мелкие и средние образовались при столкновении и разрушении крупных. Происхождение комет связано с влиянием ближайших звезд на наиболее удаленные малые тела планетной системы, что еще больше смещало эти тела и вытягивало их орбиты.

Система спутников планет образовалась примерно по той же схеме, что и планетная система в целом. Исключение составляют спутники, вращающиеся в противоположном направлении. Таких спутников крайне мало, они есть только у Юпитера, Сатурна и Нептуна. Их происхождение связано с захватом планетами пролетавших рядом малых небесных тел. Этот процесс захвата позволил Солнцу и планетам довольно хорошо очистить Солнечную систему от мелких тел и космической пыли. Так, Земля каждые сутки захватывает примерно 260 000 т метеоритного вещества.

На примере образования Солнечной системы видно, как многочастичная полностью хаотизированная система постепенно превращалась в детерминированную систему космических макротел, движение которой весьма точно описывается классической механикой. Солнце, планеты и их спутники, астероиды и кометы образуют единую самоорганизующуюся систему, в которой при определенных условиях, реализовавшихся, по крайней мере, на одной планете, возникла разумная жизнь.

^ Эволюция Земли.

Для эволюции Земли наиболее важными оказались те процессы, которые касались тонкого поверхностного слоя планеты (литосферы, гидросферы, атмосферы). Эти условия соответствуют довольно узким диапазонам изменения температуры окружающей среды, ее состава, давления, гравитационного и ЭМ полей. В эволюции формы Земли основную роль играла сферическая симметрия гравитационного поля. Однако из-за вращения и других причин Земля не является точной сферой, а ближе к эллипсоиду вращения.

Модель земных недр:
  • Твердая земная кора толщиной 30-60 км на континентах и 3-17 км в океанах;
  • Мантия, достигающая глубины 3000 км;
  • Ядро земли, внешняя часть которого жидкая (до глубины 5000 км), а внутренняя часть радиусом 1500 км – предположительно твердая.

Существует несколько моделей эволюции Земли. По одной из них современной строение Земли возникло из первоначально гомогенной протопланеты в результате плавления и переноса более тяжелых компонентов в глубинные области. Другая модель предполагает, что уже в ранний период образования протопланеты сперва конденсировались тяжелые в частицы, образуя ядро, а затем на него оседали более легкие конденсаты в виде силикатов, постепенно образуя мантию планеты.

Скорее всего, ядро Земли возникло в результате интенсивного захвата зарождающимся ядром тяжелых фракций космической пыли, а затем – усилившегося захвата легких фракций. Одновременно протекал процесс дифференциации ядра и мантии.

Жидкая фаза в недрах Земли присутствует до сих пор, что подтверждается выбросами лавы при извержении вулкана. Источником нагрева Земли являются: солнечное излучение, гравитационное сжатие, приливное трение, распад радиоактивных изотопов, удары захватываемых Землей космических тел. Последний источник был особенно важен не ранних стадиях формирования Земли. Наиболее мощным и распределенным по всему объему планеты было выделение энергии радиоактивного распада короткоживущих радиоактивных изотопов, почти исчезнувших к настоящему времени. Солнечное излучение нагревает только тонкий поверхностный слой планеты.

Земная кора вместе с подстилающим ее слоем мантии образует литосферу. Литосфера «плавает» на верхнем слое мантии, называемом астеносферой. Подстилающие земную кору слои пластичны и подвижны. В этих слоях имеют место горизонтальных и вертикальные перемещения вещества мантии, приводящие к разломам в земной коре, ее делению на фрагменты, к их взаимному перемещению и погружению в мантию. Такие фрагменты называются литосферными плитами. По линиям разломов имеет место вулканическая активность. Такая модель строения Земли подтверждается прямыми геологическими и геофизическими исследованиями.

На всех этапах эволюции Земли происходила дегазация твердого и жидкого материала, в результате чего возникла первичная атмосфера. Из нее конденсировалась вода – возникла гидросфера.

Первичная атмосфера была обогащена углекислым газом. Глобальное изменение атмосферы наступило около 2 млрд лет назад и связано с фотосинтезирующей деятельностью растений. В результате атмосфера обогатилась кислородом и стабилизировалась по составу, что в сочетании с прочими благоприятными условиями обеспечило возможность возникновения и развития разнообразных форм жизни на Земле.

Атмосферу можно разделить на несколько слое:
  • Тропосфера (высота 8-17 км) обеспечивает круговорот воды в природе;
  • Стратосфера (до 55 км) содержит повышенную концентрацию озона, защищающего все живое от действия ультрафиолетовых лучей;
  • Ионосфера (выше 55 км) защищает от космического излучения и отражает радиоволны, обеспечивая глобальную радиосвязь.

Для жизни наиболее важна та часть Земли, в которой обитают живые существа, т.е. биосфера. Она включает в себя все живое, гидросферу, те области литосферы и атмосферы, в которых обнаруживается жизнь. Масса всего живого составляет 10-4 массы атмосферы, однако ее современный состав в значительной степени зависит от жизнедеятельности представителей флоры и фауны, включая практическую деятельность человека.

Таким образом в результате эволюции в сложной открытой материальной системе самопроизвольно возникает из вещества в элементарной форме и хаотизированном состоянии упорядоченная сложная многоуровневая конструкция – планета, дающая начало еще более сложной самоорганизующейся и самоподдерживающейся системе – живой материи.