Векторные взаимодействия световых волн при фотоиндуцированном рассеянии света в кристаллах ниобата лития 01. 04. 05 Оптика
Вид материала | Автореферат диссертации |
- Взаимодействие акустических волн и лазерных пучков с индуцированными решетками и доменными, 402.08kb.
- Процессы разупорядочения в фоторефрактивных монокристаллах ниобата лития и их проявление, 362.19kb.
- Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля, 57.78kb.
- Квантовая оптика (2 часа), 10.23kb.
- Исследование зависимости показателя преломления света в веществе от величины его электрический, 96.78kb.
- Календарный план занятий по дисциплине физикА (разделы Оптика, атомная и ядерная физика), 163.74kb.
- Лекция n15 Лекция 15, 285.42kb.
- Хоружий С. С. Шаг вперед, сделанный в рассеянии, 1192.62kb.
- Лекция № Дата: Раздел: «Оптика», 56.47kb.
- Глаз. Оптическая система глаза, 484.48kb.
На правах рукописи
МАКСИМЕНКО ВИТАЛИЙ АЛЕКСАНДРович
ВЕКТОРНЫЕ ВЗАИМОДЕЙСТВИЯ СВЕТОВЫХ ВОЛН
ПРИ ФОТОИНДУЦИРОВАННОМ РАССЕЯНИИ СВЕТА
В КРИСТАЛЛАХ ниобата лития
01.04.05 – Оптика
Автореферат
диссертации на соискание ученой степени
доктора физико-математических наук
Хабаровск
2010
Работа выполнена в ГОУ ВПО «Дальневосточный государственный университет путей сообщения»
Научный консультант: заслуженный деятель науки РФ,
доктор физико-математических наук,
профессор
Строганов Владимир Иванович
Официальные оппоненты: заслуженный деятель науки РФ,
доктор физико-математических наук,
профессор
Маныкин Эдуард Анатольевич
доктор физико-математических наук,
профессор
Витрик Олег Борисович
доктор физико-математических наук,
профессор
Ванина Елена Александровна
Ведущая организация: ФГОУ ВПО «Санкт-Петербургский
государственный университет»
Защита состоится 9 июня 2010 года в 14 00 часов на заседании объединенного диссертационного совета ДМ 218.003.01 при ГОУ ВПО «Дальневосточный государственный университет путей сообщения»
по адресу: 680021, Хабаровск, ул. Серышева, 47, ауд. 204.
С диссертацией можно ознакомиться в научной библиотеке Дальневосточного государственного университета путей сообщения.
Автореферат разослан ___ мая 2010 года.
Ученый секретарь
диссертационного совета ДМ 218.003.01 Т.Н. Шабалина
^ ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы
Взаимодействия световых волн в нелинейных средах интенсивно изучаются в течение последних десятилетий, и интерес к данной области исследований не ослабевает. Это связано с высокой научно-практической значимостью указанной тематики. Нелинейно-оптические эффекты служат основой для многочисленных методов исследования свойств конденсированных сред, их использование весьма перспективно в устройствах квантовой электроники, интегральной и волоконной оптики. Также надо отметить огромное многообразие различных видов нелинейных взаимодействий световых волн и вариантов их реализаций. Это обусловлено тем, что сами механизмы, обеспечивающие взаимодействия, весьма разнообразны, а вариантов осуществления того или иного взаимодействия, относящегося к какому-либо механизму нелинейности, как правило, очень много. Можно выделить наиболее обширные классы подобных эффектов: это многочастотные процессы (генерация гармоник, генерация суммарных и разностных частот, вынужденное комбинационное рассеяние и т.п.), и взаимодействия, ведущие к изменению волновых векторов по модулю или направлению, а также изменению поляризационного состояния волн, но без изменения частоты (т.е. вырожденные по частоте). Такого рода взаимодействия без изменения частоты могут быть обусловлены, например, тепловыми или фоторефрактивными эффектами (ФРЭ) [1-3]. Под фоторефракцией (фоторефрактивным эффектом) в рамках настоящей работы будет пониматься изменение показателя преломления вещества n, которое возникает из-за наведенного светом пространственного переноса заряда.
Исторически первыми были изучены скалярные взаимодействия, когда взаимодействующие волны сонаправлены и не различаются по состоянию поляризации. Довольно много ранних работ посвящено процессам векторного взаимодействия, для случаев, когда поляризации волн различны, а волновые вектора коллинеарны. Хотя имеются работы, в которых рассматриваются некоторые частные случаи, когда и поляризация и направление волновых векторов различны [4-6], но общая картина не создана. Во многом это связано с тем, что при различии у взаимодействующих волн и поляризации и направления сложно выделить эффекты, обусловленные только неколлинеарностью волновых векторов. Детальное изучение неколлинеарного взаимодействия волн с одинаковой поляризацией важно, поскольку оно позволяет выявить особенности нелинейно-оптических явлений, обусловленные непосредственно неколлинеарностью взаимодействующих волн в тех или иных экспериментальных условиях. При этом существует проблема выявления таких условий реализации неколлинеарных взаимодействий световых волн с одинаковой поляризацией, при которых отсутствовали бы взаимодействия другого типа, а также были бы сведены к минимуму иные мешающие факторы (например, влияние тепловых эффектов). Эта проблема не решена, в первую очередь из-за отсутствия модельного объекта.
Имеются основания предполагать, что данные неколлинеарные взаимодействия с одинаковой поляризацией могут эффективно осуществляться в чистом виде в слаболегированных фоторефрактивными примесями кристаллах ниобата лития LiNbO3 при облучении их светом с подходящей длиной волны. Однако это предположение требует проверки. Необходимо также определить те примеси, легирование которыми обеспечивало бы преимущество такого взаимодействия в кристаллах LiNbO3 по сравнению с другими типами. Отметим, что реализуемые в кристаллах ниобата лития схемы векторных взаимодействий световых волн весьма разнообразны, они проявляют чувствительность к поляризации, длине волны и интенсивности излучения накачки. Это обусловлено тем, что кристаллы ниобата лития обладают уникальным набором электрооптических, нелинейнооптических и фотоэлектрических свойств, причем их свойствами можно управлять в широком диапазоне путем легирования различными примесями [3-5]. Учет оптической анизотропии, дихроизма, обусловленного примесным поглощением кристаллов, анализ особенностей электрооптического и фотовольтаического эффектов важны для выявления необходимых условий существования требуемого типа взаимодействия в этих кристаллах.
Эффективная реализация векторного взаимодействия в анизотропных фоторефрактивных кристаллах при использовании классических схем, когда в среде пересекаются несколько (в большинстве случаев – два) световых пучков затрудняется необходимостью подбора углов фазового синхронизма для взаимодействующих волн. Осложняющим фактором здесь является то, что в реальных кристаллах всегда имеются случайные пространственные флуктуации оптических и фотоэлектрических параметров среды, в результате чего условия синхронизма будут варьироваться при переходе от одной точки кристалла к другой. Также затрудняется подбор углов синхронизма из-за того, что пространственное распределение оптически индуцированной (в результате ФРЭ) анизотропии показателя преломления имеет сложный характер [6]. Однако данная проблема может быть решена, если требуемое взаимодействие (случай неколлинеарных волновых векторов и одинаковых поляризаций) осуществлять в виде фотоиндуцированного рассеяния света (ФИРС). ФИРС является следствием фоторефрактивного эффекта, представляя собой рассеяние когерентного оптического излучения на фотоиндуцированных мелкомасштабных неоднородностях показателя преломления среды. В случае рассеяния обеспечивается широкий угловой диапазон волновых векторов взаимодействующих волн, за счет чего условия фазового синхронизма (условия усиления) реализуются автоматически для волн пересекающихся под необходимыми углами. Таким образом, исследование пространственно-угловой структуры ФИРС является эффективным способом изучения новых типов векторных взаимодействий световых волн в фоторефрактивных кристаллах. Однако для правильной интерпретации результатов изучения ФИРС требуется модель, учитывающая характер взаимодействия, собственную и оптически наведенную анизотропию кристалла, а также пространственную неоднородность показателя преломления кристалла, в области, где происходит взаимодействие волн.
Исследования ФИРС, ведущиеся с 60-х годов двадцатого века (и особенно интенсивно с 80-х годов), изначально шли по двум направлениям: первое – нахождение условий подавления рассеяния и второе – использование экспериментальных данных исследования ФИРС для изучения свойств фоторефрактивных кристаллов. И если для многих практических приложений первая задача решена, то второе направление дает широкое поле деятельности [7]. Так, значительный интерес представляет разработка методов определения фотопроводимости среды посредством анализа закономерностей кинетики ФИРС. Другие методы нахождения фотопроводимости (по анализу кинетики дифракционной эффективности записанной в фоторефрактивной среде голограммы, либо прямым измерением тока, протекающего через образец) требуют достаточно сложных измерительных схем и высокоточной настройки измерительной техники. Определение фотопроводимости по анализу ФИРС представляется хотя и менее точным, но намного более простым способом, который может применяться в экспрессном режиме при проведении комплексных исследований свойств фоторефрактивных сред.
Наряду с активным исследованием вырожденных по частоте векторных взаимодействий, осуществляемых на решетках показателя преломления в фоторефрактивных средах, в последние годы растет интерес к многочастотным процессам, реализуемым на решетках квадратичной нелинейности (например, в периодически поляризованных кристаллах ниобата лития) [8]. Это направление имеет весьма большое прикладное значение, поскольку структуры с пространственно-периодической модуляцией квадратичной нелинейности могут служить эффективными преобразователями частоты оптического излучения. С данным направлением смыкаются работы по пространственной модуляции квадратичной нелинейности и фотоиндуцированной генерации второй гармоники (ФГВГ) в силикатных стеклах [9]. Выполнение условий фазового синхронизма в данном случае имеет ряд малоизученных особенностей. Так, не вполне выяснена природа пространственных осцилляций интенсивности второй гармоники, генерируемой на решетке квадратичной нелинейности, хотя можно предположить, что она связана с волновой расстройкой между оптической второй гармоникой и волной нелинейной поляризации среды.
Надо отметить также, что фотоиндуцированная модуляция квадратичной нелинейности принципиально возможна и в сегнетоэлектрических кристаллах типа ниобата лития (за счет ФРЭ). Возможности эти изучены мало, поэтому исследование взаимодействия световых волн при наличии пространственно-периодической квадратичной нелинейности в различных светочувствительных средах представляется интересной и важной задачей.
Все изложенные выше соображения предопределили постановку задачи и выбор методов и объектов исследований в работе.
Цель работы – исследование новых реализаций векторного взаимодействия световых волн, связанных с расстройкой волновых векторов взаимодействующих волн, при фотоиндуцированном рассеянии света в кристаллах ниобата лития. Выявление особенностей генерации второй оптической гармоники в среде с пространственно-периодической квадратичной нелинейностью.
^ Основные задачи диссертационной работы заключаются в следующем:
- Выявление особенностей формирования изображения оптически индуцированных дефектов в кристаллах ниобата лития, а также определение поляризационных характеристик излучения, прошедшего через область с оптическим повреждением.
- Исследование анизотропии поглощения света в кристаллах ниобата лития с различными легирующими примесями и анализ влияния анизотропии поглощения на эффективность векторных взаимодействий световых волн различного типа в кристаллах ниобата лития.
- Оценка влияния различных факторов (длины волны, интенсивности и поляризации падающего излучения, а также вида легирующей примеси) на процесс фотоиндуцированного рассеяния света в кристаллах ниобата лития.
- Исследование процесса нестационарного энергообмена при векторном взаимодействии между рассеянным светом и накачкой в легированных кристаллах ниобата лития для различных интенсивностей пучка накачки.
- Определение фотопроводимости легированных кристаллов ниобата лития путем анализа временных характеристик интенсивности фотоиндуцированного рассеяния.
- Выбор модели фотогенерации свободных носителей заряда, согласующейся с экспериментально полученными люкс-амперными характеристиками и определение основного механизма транспортировки заряда в кристаллах ниобата лития, легированных родием.
- Разработка методик построения и анализа индикатрис ФИРС, основанных на обработке цифрового фотоизображения программными средствами. Проведение анализа угловой зависимости коэффициента усиления ФИРС и оценка применимости существующих моделей ФИРС для описания фотоиндуцированного рассеяния света в кристаллах ниобата лития.
- Выявление закономерностей формирования индикатрисы широкоуглового ФИРС в кристаллах ниобата лития.
- Экспериментальное исследование особенностей пространственной структуры селективного по углу ФИРС в легированных кристаллах ниобата лития.
- Разработка физико-математической модели четырехволнового взаимодействия световых волн необыкновенной поляризации (еее-е типа) для случая оптически анизотропной среды с пространственно неоднородным показателем преломления. Расчет пространственно-угловой структуры селективного по углу ФИРС еее-е типа в кристаллах ниобата лития.
- Решение задачи о нахождении поля второй оптической гармоники, генерируемой в среде с записанной (2)-решеткой.
^ Методы исследования
Для решения поставленных в работе задач применялись экспериментальные и теоретические методы. В процессе постановки и проведения эксперимента использовались фотоэлектрический, спектрофотометрический и фотографический методы, а также метод визуального наблюдения. Обработка и интерпретация результатов осуществлялись с использованием статистических методов, цифровых методов анализа изображений. При расчете фазы и интенсивности второй гармоники на (2)-решетке применялся аналитический метод решения системы нелинейных дифференциальных уравнений с разделяющимися переменными.
^ Научная новизна работы
- Исследована анизотропия поглощения в легированных кристаллах LiNbO3. Установлено, что от рода легирующей примеси и от длины волны света зависит как величина, так и характер анизотропии поглощения.
- Реализовано неколлинеарное взаимодействие световых волн с одинаковой (необыкновенной) поляризацией в кристаллах ниобата лития, легированных железом и родием. Данный тип взаимодействия получен в виде селективного по углу фотоиндуцированного рассеяния света необыкновенной поляризации (еее-е типа), которое ранее в литературе на описывалось.
- Построена модель векторного четырехволнового взаимодействия еее-е типа в анизотропной среде с оптически наведенным, пространственно неоднородным изменением показателя преломления. В рамках модели описан экспериментально обнаруженный новый вид селективного ФИРС в легированных кристаллах ниобата лития.
- Предложены цифровые методы анализа диффузных изображений, позволяющие упростить изучение пространственной структуры ФИРС. Построены индикатрисы ФИРС; выявлены закономерности угловой зависимости коэффициента преобразования ФИРС.
- Экспериментально и теоретически исследованы индикатрисы селективного ФИРС еее-е типа в направлении прошедших и отраженных лучей в легированных кристаллах ниобата лития при различных углах падения пучка накачки.
- Проведено экспериментальное изучение кинетики интенсивности ФИРС в кристаллах LiNbO3:Fe и LiNbO3:Rh при интенсивности пучка накачки, изменяющейся в диапазоне 1÷7 кВт/см2 на длине волны 0,6328 мкм. Из анализа временных характеристик интенсивности ФИРС определен характер зависимости фотопроводимости кристаллов ниобата лития, легированных родием, от интенсивности излучения накачки.
- Установлен характер пространственной зависимости амплитуды свободной и вынужденной волн на частоте второй гармоники (ВГ), возникающих на решетке квадратичной нелинейности. Амплитуда вынужденной гармоники осциллирует с изменением длины нелинейного взаимодействия L, амплитуда свободной гармоники линейно возрастает с увеличением L. Получена пространственная зависимость фазы результирующей волны второй гармоники, генерируемой на решетке квадратичной нелинейности.
Оригинальность и новизна результатов подтверждается публикациями в ведущих отечественных физических журналах.
^ Связь с государственными программами и НИР
Диссертационная работа автора связана с фундаментальными научно-исследовательскими темами ОАО «РЖД» «Анизотропное отражение и электрооптические свойства кристаллов» и «Фоторефрактивные свойства пироэлектрических кристаллов», выполняемыми на кафедре физики Дальневосточного государственного университета путей сообщения. Часть результатов получена при поддержке Инновационно-образовательной программы, выполняемой в ДВГУПС (2007–2008 гг.).
^ Практическая ценность работы
Результаты, полученные в диссертационной работе, могут быть использованы для разработки нелинейно-оптических элементов и создания на их основе новых оптических устройств обработки, передачи, записи и хранения информации. Предложен цифровой метод анализа диффузных изображений. Метод построения индикатрис ФИРС, предложенный в работе, может применяться для анализа угловых зависимостей интенсивности излучения при решении различных исследовательских и прикладных задач оптики. Предложено использовать метод анализа временных зависимостей интенсивности ФИРС для оценки величины фотопроводимости легированных кристаллов ниобата лития.
^ Апробация работы
Основные результаты работы докладывались на следующих конференциях:
- Международном симпозиуме (Первые, Вторые, Третьи Самсоновские Чтения) «Принципы и процессы создания неорганических материалов», Владивосток, Хабаровск, 1998, 2002, 2006.
- IV Всероссийской научно-технической конференции «Методы и средства измерений физических величин». – Нижний Новгород, 1999.
- III Международном студенческом конгрессе стран АТР, Владивосток, 1999.
- «Оптика-99», «Оптика-2001», «Оптика-2003», «Оптика-2005», межд. конф. молодых ученых и специалистов, Санкт-Петербург, 1999, 2001, 2003, 2005.
- Международном симпозиуме «Modern problems of laser physics», Новосибирск, Россия, 2000.
- «ICONO-2001» (XVII Международная конференция по когерентной и нелинейной оптике, КИНО’01), Белоруссия, Минск, 2001.
- X, XII, XIII Международной конференции «Laser Optics», Санкт-Петербург, 2000, 2006, 2008.
- VII Всероссийской школе-семинаре «Люминесценция и сопутствующие явления». Иркутск, 2001.
- VII Международной конференции «Кристаллы: рост, свойства, реальная структура, применение». Александров, 2004.
- XI Международном симпозиуме «Atmospheric and Ocean Optics. Atmospheric physics», Томск, 2004.
- II Азиатско-Тихоокеанском Конгрессе «Fundamental Problems of Optoelectronics and Microelectronics», Хабаровск, 2004.
- Международном оптическом конгрессе «Оптика – XXI век» – Санкт-Петербург, 2004, 2008.
- Научной сессии МИФИ-2007, МИФИ-2009, МИФИ-2010, Москва, 2007, 2009, 2010.
- Международной конференции «Оптика кристаллов и наноструктур», Хабаровск, 2008.
- VIII школе «Нелинейные волны», Н. Новгород, 2008.
- XXVI Всероссийской школе по когерентной оптике и голографии, Иркутск, 2008.
Публикации и вклад автора
По теме диссертации автором опубликована 41 работа, в том числе 9 статей в ведущих рецензируемых научных журналах, рекомендованных Высшей аттестационной комиссией для соискателей ученой степени доктора наук, 2 монографии, 4 статьи на английском языке в сборниках трудов SPIE. Основные результаты диссертации отражены в 32 статьях, список которых приведен в конце автореферата.
Автору принадлежит формулировка цели и постановка задач исследований, обоснование способов их осуществления, непосредственное выполнение значительной части экспериментов, основных аналитических расчетов, анализ и систематизация результатов.
^ Структура и объем работы
Диссертация состоит из введения, 7 глав, заключения, содержит 272 страниц машинописного текста, 92 рисунка, 4 таблицы и список литературы из 270 наименований, включая работы автора.
^ Основные защищаемые положения
- В кристаллах ниобата лития, легированных родием, реализуются условия, дающие преимущество для взаимодействия неколлиарных световых волн с одинаковой (необыкновенной) поляризацией на длине волны 0,6328 мкм по сравнению с другими типами взаимодействий.
- Построена физико-математическая модель, описывающая особый тип векторного (неколлинеарного) четырехволнового взаимодействия световых волн одинаковой (необыкновенной) поляризации при наличии волновой расстройки. Данное взаимодействие реализовано в виде селективного по углу фотоиндуцированного рассеяния света еее-е типа (ранее не исследованного) на длине волны 0,6328 мкм в легированных кристаллах ниобата лития. В рамках построенной модели исследованы основные закономерности обнаруженного рассеяния.
- Обнаружены ранее не изученные особенности спекл-полей в картинах широкоуглового фотоиндуцированного рассеяния на длине волны 0,6328 мкм, сопутствующего селективному ФИРС еее-е типа (и обусловленного тем же типом взаимодействия). Фактором, влияющим на характеристики (контрастность, общее количество спеклов) спекл-структуры в картине рассеяния, являются фотоиндуцированные пространственно-временные флуктуации диэлектрической проницаемости в освещаемой области кристалла.
- Изучены особенности энергообмена между волной накачки и рассеянными волнами в процессе фотоиндуцированного рассеяния света еее-е типа на длине волны 0,6328 мкм в легированных кристаллах ниобата лития. Установлено, что основной механизм фоторефракции в кристаллах ниобата лития, легированных родием, имеет фотовольтаическую природу. Процессы фотовозбуждения свободных носителей заряда в кристаллах ниобата лития, легированных родием, описываются двухцентровой моделью переноса заряда.
- Объяснена природа пространственных осцилляций интенсивности второй гармоники, генерируемой в среде с пространственно модулированной квадратичной нелинейностью при выполнении условий фазового квазисинхронизма.