Программа дисциплины дн. В. 2 «Экономико-математические методы в экономике» Для студентов направления подготовки 080100 «Экономика»

Вид материалаПрограмма дисциплины

Содержание


1. Цели и задачи дисциплины.
2. Требования к уровню освоения содержания дисциплины.
3. Содержание дисциплины
Тема 3. Применение линейного программирования в математических моделях оптимального планирования.
Тема 4. Теория двойственности в линейном программировании и её прикладное значение.
Тема 5. Экономико-математические модели, сводимые к транспортной задаче.
Тема 6. Динамическое программирование и его экономические приложения.
Тема 7. Постановка задачи нелинейного программирования. Теорема Куна-Таккера
Тема 8. Экономические приложения нелинейного программирования: числовые модели
Тема 9. Экономические приложения выпуклого программирования: теоретический анализ
Тема. 10. Понятие об имитационном моделировании
Тема 11. Модели межотраслевого баланса
Тема 12. Метод моделирования в эконометрике. Понятие об эконометрическом моделировании
Тема 13. Постановка задачи регрессионного анализа.
Тема 14. Расчет коэффициентов уравнения регрессии методом наименьших квадратов.
Тема 15. Оценивание надежности коэффициентов уравнения регрессии.
Тема 16. Проверка качества уравнения регрессии.
Тема 17. Экономический анализ на основе уравнений регрессии
Тема 18. Системы массового обслуживания
Тема 19. Модели управления запасами.
...
Полное содержание
Подобный материал:

Федеральное Агентство по образованию РФ



ОБНИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АТОМНОЙ ЭНЕРГЕТИКИ (ИАТЭ)






УТВЕРЖДАЮ




Проректор по учебной работе


___________________ С.Б. Бурухин





«______»____________ 200__ г.



ПРОГРАММА ДИСЦИПЛИНЫ


ДН.В.2 «Экономико-математические методы в экономике»


Для студентов направления подготовки 080100 «Экономика»


Форма обучения: очная


Объем дисциплины и виды учебной работы по очной форме в соответствии с учебным планом


Вид учебной работы

Всего часов

Семестры

6

7







Общая трудоемкость дисциплины

250

125

125







Аудиторные занятия

136

68

68







Лекции

68

34

34







Практические занятия и семинары

34

34

0







Лабораторные работы

34

0

34







Курсовой проект (работа)

0

0










Самостоятельная работа

57

57










Расчетно-графические работы

0

0










Вид итогового контроля (зачет, экзамен)

Зачет,

экзамен

Зачет

Экзамен








Обнинск 2007


Программа составлена в соответствии с Государственным образовательным стандартом высшего профессионального образования по направлению подготовки бакалавров 080100 «Экономика».


Программу составила:


К.В.Найдёнкова, ст.преподаватель кафедры экономики, экономико-математических методов и информатики _________________


Программа рассмотрена на заседании кафедры экономики, экономико-математических методов и информатики (протокол № __ от __.__.200_ г.)


Заведующий кафедрой

“Экономика, Экономико-Математические Методы и Информатика”


___________________ В.Ю.Гусев


«____»_____________ 200__ г.


СОГЛАСОВАНО


Начальник Учебно–методического управления


___________________ Ю.Д. Соколова


“____”_____________ 200__ г.

Декан

факультета социально-экономического


___________________ В.Н. Тябин


“____”_____________ 200__ г.



^ 1. Цели и задачи дисциплины.


Целью учебной дисциплины «Экономико-математические методы в экономике» является усвоение студентами теоретических знаний и приобретение практических навыков по формулированию экономико-математических моделей, их анализу и использованию для принятия управленческих решений на всех уровнях управления организацией.

Задачи дисциплины:
  1. Ознакомить студентов с сущностью, познавательными возможностями и практическим значением моделирования как одного из научных методов познания реальности.
  2. Дать представление о наиболее распространённых математических методах, используемых для формализации экономико-математических моделей.
  3. Сформировать навыки решения модели или постановки модельного эксперимента на ПК.
  4. Научить интерпретировать результаты экономико-математического моделирования и применять их для обоснования конкретных хозяйственных решений.
  5. Сформировать базу для дальнейшего изучения приложений экономико-математического моделирования

    Содержание курса построено исходя из необходимости охвата теоретико-методологических основ моделей микроэкономики и экономики предприятия, предопределяемом областью применения, установленной государственным образовательным стандартом по направлению «Экономика».



^ 2. Требования к уровню освоения содержания дисциплины.

В результате изучения дисциплины студент должен

Знать: теоретические основы моделирования как научного метода; основные задачи, решаемые с помощью экономико-математического моделирования; условия применения математических методов (линейного программирования, нелинейного программирования, динамического программирования) для формализации экономических процессов; экономическую интерпретацию множителей Лагранжа и объективно обусловленных оценок благ;

владеть: изобразительными средствами представления экономико-математических моделей в объёме, достаточном для понимания их экономического смысла; навыками формулирования простейших прикладных экономико-математических моделей; программным обеспечением решения задач линейного и выпуклого программирования (Sunset XA и средство «Поиск решения» табличного процессора Microsoft Excel, прикладные пакеты программ « Statgraphic Plus» и «Statistica 12.0»).

иметь представление: о роли метода моделирования в процессе познания экономической реальности и подготовки управленческих решений; об условиях и границах применимости моделирования; о рисках, связанных с принятием хозяйственных решений с помощью экономико-математических моделей;

уметь: самостоятельно составлять, решать и интерпретировать простейшие практически значимые экономико-математические модели; обосновывать хозяйственные решения на основе результатов решения модели.





^ 3. Содержание дисциплины


3.1. Лекции


Тема 1. Вводная лекция. Цели и задачи, тематика курса. История развития экономико-математического моделирования. 2 часа


Тема 2. Принципы экономико-математического моделирования.
Принцип аналогии. Определение понятия модели. Определение понятия математической модели. Преимущества использования экономико-математического моделирования. Экономические ситуации и используемые в них экономико-математические модели. Условия применимости, преимущества и недостатки метода моделирования. Определение экономико-математического моделирования по В.С. Немчинову. Этапы экономико-математического моделирования. Классификация экономико-математических методов и моделей. 4 часа

^

Тема 3. Применение линейного программирования в математических моделях оптимального планирования.


Принцип оптимальности в планировании и управлении. Формы записи задачи линейного программирования и их интерпретация. Геометрическая интерпретация задачи линейного программирования. Симплексный метод.

Экономические приложения линейного программирования: основная задача народнохозяйственного планирования по Л.В. Канторовичу, основная задача производственного планирования. Программное обеспечение линейного программирования и работа с ним. 8 часов

^

Тема 4. Теория двойственности в линейном программировании и её прикладное значение.


Формулировка двойственной задачи линейного программирования, её экономическая интерпретация. Теоремы двойственности и их экономическое значение. Понятие двойственной оценки ограничения и объективно обусловленной оценки ресурса. Стоимостная интерпретация двойственных оценок. Проверка адекватности линейной экономико-математической модели с помощью двойственных оценок. Использование объективно обусловленных оценок в экономическом анализе и планировании. 4 часов

^

Тема 5. Экономико-математические модели, сводимые к транспортной задаче.


Формулировка и варианты постановки транспортной задачи. Решение транспортной задачи методом «северо-западного угла», методом минимальной стоимости. Метод потенциалов в решении транспортной задачи. Задача о назначениях и её использование в практике менеджмента персонала. 4 часа


^

Тема 6. Динамическое программирование и его экономические приложения.


Формулировка задачи динамического программирования. Принцип оптимальности Беллмана. Алгоритм решения задач динамического программирования. Экономические приложения: бизнес-планирование, управление проектами, управление реновацией основных средств производства. 2 часа

^

Тема 7. Постановка задачи нелинейного программирования. Теорема Куна-Таккера


    Формулировка общей задачи математического программирования. Классификация задач нелинейного программирования. Понятие о функции Лагранжа. Теорема Куна-Таккера для общей и выпуклой задач математического программирования. Экономическая интерпретация множителей Лагранжа в оптимуме задачи математического программирования. Функциональная матрица задачи математического программирования в точке оптимума и её свойства. 4 часа



^

Тема 8. Экономические приложения нелинейного программирования: числовые модели


Градиентные методы численного решения задач выпуклого программирования. Программное обеспечение выпуклого программирования. Линеаризация задач выпуклого программирования. Сепарабельное программирование и его применение для приближённого решения невыпуклых задач математического программирования. Практические приложения числовых моделей нелинейного программирования. 4 часа


^

Тема 9. Экономические приложения выпуклого программирования: теоретический анализ


Неоклассическая микроэкономическая модель хозяйствующего субъекта.

Оптимальные объёмы потребления ресурсов и выпуска продукции. Лемма Хотеллинга. Основные понятия теоретических моделей потребительского спроса. Анализ компенсационных эффектов при анализе потребительского спроса. Уравнение Слуцкого. 4 часа

^

Тема. 10. Понятие об имитационном моделировании


Понятия имитационной модели и вычислительного эксперимента.

Основное предположение имитационного моделирования, накладываемые им ограничения на познавательные возможности метода. Инструментальные средства имитационного моделирования. Обзор практических приложений в областях логистики, маркетинга, финансов. 2 часа

^

Тема 11. Модели межотраслевого баланса


Балансовый метод. Система уравнений межотраслевых связей В.К. Дмитриева. Схема межотраслевого баланса по В.Леонтьеву. Экономическая модель межотраслевого баланса. Коэффициенты прямых и полных затрат. Анализ экономических показателей при помощи модели межотраслевого баланса.

Теорема о балансовой системе и её экономическое содержание. 4часа

^

Тема 12. Метод моделирования в эконометрике. Понятие об эконометрическом моделировании


Понятие эконометрической модели. Теоретическая модель исследуемого процесса и её эмпирическая спецификация — предпосылки оценивания ненаблюдаемых параметров. Правила выбора эмпирической спецификации.

Особенности оценивания микроэкономических эконометрических моделей прибыли, затрат и выпусков. Эконометрический анализ технологической эффективности. 4 часа

^ Тема 13. Постановка задачи регрессионного анализа.

Статистические данные. Результирующий показатель и факторы. Корреляционная и функциональная зависимости. Уравнение регрессии. Парная и множественная корреляции. Этапы проведения регрессионного анализа.

2 часа


^ Тема 14. Расчет коэффициентов уравнения регрессии методом наименьших квадратов.

Регрессионные остатки. Система уравнений для расчета коэффициентов линейного уравнения регрессии. 2 часа

^ Тема 15. Оценивание надежности коэффициентов уравнения регрессии.
Определение понятия надежности оцениваемого коэффициента. Использование коэффициента частной корреляции и t-критерия Стъюдента. 2 часа


^ Тема 16. Проверка качества уравнения регрессии.

Определение понятия качества уравнения регрессии. Использование коэффициента корреляции и критерия Фишера. Статистика Дарбина-Уотсона. Корректировка моделей. 4 часа


^ Тема 17. Экономический анализ на основе уравнений регрессии
Интерпретация коэффициентов уравнения регрессии. Изучение вклада факторов в изменение результирующего показателя. Прогнозирование результатов экономической деятельности. 4 часа


^ Тема 18. Системы массового обслуживания

Классификация систем массового обслуживания и их показатели эффективности Системы с отказами. Системы с отказами. Системы с ожиданием. Характеристики входящего потока заявок на обслуживание. Простейшие, или пуассоновские потоки. Характеристики механизма обслуживания. Граф состояния со схемой гибели и рождения. Число состояний. Вычисление вероятностей состояний системы массового обслуживания. Система уравнений для определения вероятностей состояния. Общее правило вычисления вероятностей состояния. Вероятность отказа. 6 часов


^ Тема 19. Модели управления запасами.

Основные понятия. Статистическая детерминированная модель с дефицитом и без дефицита. Стохастические модели управления запасами. Стохастические модели управления запасами с фиксированным временем задержки поставок

4 часа


^ 3.2. Практические и семинарские занятия


Раздел(ы)

Тема практического или семинарского занятия

Литература

Кол-во часов

1

Формализация экономических задач. Построение экономико-математических моделей плана реализации продукции. Задача о диете. Задача об использовании производственных мощностей

1,3,{4}

2

2

Экономико-математические методы и модели: области и условия применения. Постановка задач линейного программирования

5,6

2

3

Геометрический метод решения задач линейного программирования

6,10, {2}

2

3

Симплексный метод и его особые случаи

6,7,11

2

4

Экономическая интерпретация двойственных задач. Объективно обусловленные оценки и их смысл. Практическое применение теории двойственности

3,8,9

4

5

Описание транспортной задачи. Метод северо-западного угла и метод минимальной стоимости

4, {2}, {3}

2

5

Метод потенциалов в решении транспортных задач.

6, {3}

2

6

Принцип оптимальности и уравнения Беллмана. Решение задач о распределении средств между предприятиями. Распределение ресурсов между отраслями

2,11, {3}

4

7

Функция и множители Лагранжа, особенности их практического использования

2,6

2

11

Межотраслевые балансы. Анализ коэффициентов затрат

2

2

12

Особенности эконометрических моделей

{2}, {3}

2

13-17

Корреляционно-регрессионный анализ. Проверка качества уравнения регрессии и его параметров. Выбор формы связи между переменными.

2, 3, 9{5}

6

19

Построение моделей управления запасами

1, {1}

2


^ 3.3. Лабораторный практикум


Раздел(ы) курса

Наименование раздела

Тема лабораторной работы

Кол-во часов

3

Применение линейного программирования в математических моделях оптимального планирования

Графический метод решения задач линейного программирования

2

Решение задачи линейного программирования симплексным методом при заданном начальном опорном решении

2

Получение начального опорного решения

2

4

Теория двойственности в линейном программировании и её прикладное значение

Экономический анализ оптимального плана

3

5

Экономико-математические модели, сводимые к транспортной задаче

Составление и решение транспортной задачи.

3

6-9

Экономические приложения нелинейного программирования: числовые модели

Учёт риска в модели размещения производства по филиалам

4

10

Тема. 10. Понятие об имитационном моделировании

Имитационная модель инфляционных процессов в экономике

3

11

Модели межотраслевого баланса

Планирование производственных пропорций на основе модели межотраслевого баланса

2

13-17

Корреляционно-регрессионный анализ

Построение зависимостей объема прибыли от затрат на производство по филиалам компании. Прогнозирование банковских кризисов на основе динамической модели экономики. Оценка качества построенных зависимостей. Корректировка моделей

7

12

 Метод моделирования в эконометрике. Понятие об эконометрическом моделировании

Оценивание неоклассической функции прибыли

4

Эконометрическое оценивание технологической эффективности с помощью метода оболочки данных

2


^ 3.4. Курсовые проекты (работы)

Не предусмотрены


3.5. Формы текущего контроля (рейтинговый контроль)



Раздел(ы)

Форма контроля

Контрольная точка

(неделя)

6 семестр

1-4

Контрольная работа

5

5-7

Контрольная работа

10

8-9

Контрольная работа

16

7 семестр

^ Контрольные работы

10-12

Контрольная работа

6

13-17

Контрольная работа

13

18-19

Контрольная работа

16

^ Лабораторный практикум

3

Лабораторная работа №1

1

3

Лабораторная работа №2

2

3

Лабораторная работа №3

3-4

4

Лабораторная работа №4

5

5

Лабораторная работа №5

6

6-9

Лабораторная работа №6

8

10

Лабораторная работа №7

9-12

11

Лабораторная работа №8

13

12

Лабораторная работа №9

14-17


^ 3.6. Самостоятельная работа

На самостоятельное изучение выносятся следующие вопросы (в форме конспектов по теме):
  1. Максимизация полезности. Исследование модели потребительского спроса. Компенсационные эффекты;

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004., с.135-156
  1. Элементы теории игр в задачах моделирования экономических процессов;

Федосеев В.В. Экономико-математические методы и прикладные модели. – М.: ЮНИТИ, 2005, с.292-300
  1. Основы теории игр. Игры с ненулевой суммой и кооперативные игры;

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004, с.217-232
  1. Применение аппарата теории игр для анализа микроэкономических проблем

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004., с.109-126
  1. Предварительный анализ и сглаживание временных рядов экономических показателей;

Федосеев В.В. Экономико-математические методы и прикладные модели. – М.: ЮНИТИ, 2005, с.124-131
  1. ^ Тренд-сезонные экономические процессы и их анализ;

Федосеев В.В. Экономико-математические методы и прикладные модели. – М.: ЮНИТИ, 2005, с.292-300

Шмойлова Р.А. Теория статистики. Учебник. – М.: Финансы и статистика, 2002, с.350-382
  1. Таблицы распределения и их использование;

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004., с.237-243
  1. Имитационное моделирование

Казаков О.Л.   Экономико-математическое моделирование: учеб.-метод. пособие.   -  М.:  МГИУ,  2006, с.216-147
  1. Марковский случайный процесс. Уравнение Колмогорова.

Кремер Н.Ш. Исследование операций в экономике. –М.: ЮНИТИ, 2006, с.335-345.
  1. СМО с отказами и с ожиданием

Кремер Н.Ш. Исследование операций в экономике. –М.: ЮНИТИ, 2006, с.347-353
  1. Адаптивные модели прогнозирования

Советов Б.Я.   Моделирование систем: Учебник для вузов.  -  М.:  Высшая школа,  1998, с.311-327
  1. Модель инфляции. Эконометрическая оценка NAIRU.

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004, с.329-341
  1. Производственные функции

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004, с.156-177
  1. ^ Комбинация ресурсов, минимизирующая издержки при фиксированном объеме выпуска.

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004, с.191-211
  1. Модели макроэкономической динамики

Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004, с.212-236


^ 4.1. Рекомендуемая литература


4.1.1. Основная литература
  1. Бережная Е.В.   Математические методы моделирования экономических систем: учеб. пособие для вузов.-  М.:  Финансы и статистика,  2005 (5экз.)
  2. Замков О.О., Толстопятенко А.В., Черемных Ю.Н. Математические методы в экономике, 4-е издание. – М.: Дело и Сервис, 2004. (7экз.)
  3. Казаков О.Л.   Экономико-математическое моделирование: учеб.-метод. пособие.   -  М.:  МГИУ,  2006 (3 экз.)
  4. Колемаев В.А.   Математическая экономика :учеб. для вузов. -  М.:  ЮНИТИ-ДАНА,  2005   (5 экз.)
  5. Кремер Н.Ш.   Высшая математика для экономистов: Учеб. для вузов.  /:  ЮНИТИ-ДАНА,  2003   (7экз.)
  6. Кремер Н.Ш. Исследование операций в экономике. –М.: ЮНИТИ, 2006 (7экз.)
  7. Лабораторный практикум по численным методам и вычислительным алгоритмам.  / под ред. Королева О.Н. -  М.:  Флинта,  2005   (2 экз.)
  8. Мажукин В.И.   Математическое моделирование в экономике: учеб. пособие для вузов Ч.1,2: Численные методы и вычислительные алгоритмы. (5 экз.)
  9. Мажукин В.И.   Математическое моделирование в экономике: учеб. пособие для вузов Ч.3: Экономические приложения.  М.:  Флинта,  2005 (3 экз.) 
  10. Миненко С.Н.  Экономико-математическое моделирование производственных систем : учебное пособие для вузов.   -  М.:  МГИУ,  2006   (4 экз.)
  11. Федосеев В.В. Экономико-математические методы и прикладные модели. – М.: ЮНИТИ, 2005. (5 экз.)


^ 4.1.2. Дополнительная литература

  1. Лукаш Е.Н.   Моделирование экономических процессов: учеб. для вузов.  _-М.: ЮНИТИ-ДАНА,  2005 (2 экз.)  
  2. Орлова И.В., Половников В.А., Федосеев В.В. Курс лекций по экономико-математическому моделированию. – М.: Экономическое образование. 1993. (3 экз.)
  3. Советов Б.Я.   Моделирование систем: Учебник для вузов.  -  М.:  Высшая школа,  1998 (1 экз.)  
  4. Шелобаев С.И. Экономико-математические методы и модели : учебное пособие для вузов. -  М.:  ЮНИТИ-ДАНА,  2005 (4 экз.) 
  5. Шмойлова Р.А. Теория статистики. Учебник. – М.: Финансы и статистика, 2002 (3 экз.)


4.2. Средства обеспечения освоения дисциплины

1. Пакет прикладных программ Statgraphic Plus 3.0

2. Пакет прикладных программ Statistica 12.0

3. Программа Microsoft Excel


5. Материально-техническое обеспечение дисциплины


Не предусмотрено