Программы кандидатских экзаменов «история и философия науки» («Философия науки») москва 2004 удк 167/168(079. 1) Ббк 87. 5я77 П78
Вид материала | Программа-минимум |
- Программы кандидатских экзаменов «история и философия науки» («История науки») «Науки, 50.92kb.
- На основе Программы кандидатских экзаменов Министерства и науки РФ от 17. 02. 2004, 19.23kb.
- Программа кандидатского экзамена история и философия науки, 363.85kb.
- Программа учебной дисциплины «История и философия науки» («Философия науки»), 263.66kb.
- Программа курса повышения квалификации профессорско-преподавательского состава по направлению, 390.62kb.
- Программа вступительного экзамена в аспирантуру по курсу "История и философия науки", 596.38kb.
- Требования к рефератам по дисциплине «История и философия науки», 46.94kb.
- Планы семинарских занятий по курсу «история и философия науки» Санкт Петербург, 139.01kb.
- Программа минимум кандидатского экзамена по курсу «История и философия науки», 151.76kb.
- Программа минимум кандидатского экзамена по курсу «История и философия науки», 123.9kb.
Рекомендуемая основная литература
1. Вебер M. Избранные произведения. М., 1990.
2. Вернадский В.И. Размышления натуралиста. Научная мысль как планетарное явление. М., 1978.
3. Глобальные проблемы и общечеловеческие ценности. М., 1990.
4. Кайре А. Очерки истории философской мысли. О влиянии философских концепций на развитие научных теорий. М., 1985.
5. Кун Т. Структура научных революций. М., 2001.
6. Малкей М. Наука и социология знания. М., 1983.
7. Никифоров А.Л. Философия науки: история и методология. М., 1998.
8. Огурцов А.П. Дисциплинарная структура науки. М., 1988.
9. Поппер К. Логика и рост научного знания. М., 1983.
10. Степин B.C. Философия науки. Общие проблемы. М., 2004.
11. Традиции и революции в развитии науки. М., 1991.
12. Философия и методология науки / Под ред. В.И. Купцова. М., 1996.
^
Дополнительная литература
1. Гайденко П.П. Эволюция понятия науки (XVII—XVIII вв.). М., 1987.
2. Зотов А.Ф. Современная западная философия. М., 2001.
3. Кезин А.В. Наука в зеркале философии. М., 1990.
4. Келле В.Ж. Наука как компонент социальной системы. М., 1988.
5. Косарева Л.Н. Социокультурный генезис науки: философский аспект проблемы. М., 1989.
6. Лекторский В А. Эпистемология классическая и неклассическая. М., 2000.
7. Мамчур ЕА. Проблемы социокультурной детерминации научного знания. М., 1987.
8. Моисеев Н.Н. Современный рационализм. М., 1995.
9. Наука в культуре. М., 1998.
10. Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986.
11. Принципы историографии естествознания. XX век / Отв. ред. И.С. Тимофеев. М., 2001.
12. Разум и экзистенция / Под ред. И.Т. Касавина и В.Н. Поруса. СПб., 1999.
13. Современная философия науки: Хрестоматия / Сост. А.А. Печенкин. М., 1996.
14. Степин B.C. Теоретическое знание. Структура, историческая эволюция. М., 2000.
15. Степин B.C., Горохов В.Г., Розов МА. Философия науки и техники. М., 1991.
16. Фейерабенд П. Избранные труды по методологии науки. М., 1986.
17. Философия / Под ред. В.Д. Губина, Т.Ю. Сидориной. М., 2004.
18. Хюбнер К. Истина мифа. М., 1996.
II. Современные философские проблемы областей научного знания
- Философские проблемы математики
Введение
Настоящая программа философской части кандидатского экзамена по курсу «История и философия науки» предназначена для аспирантов и соискателей ученых степеней всех научных специальностей, относящихся к блоку математических наук. Программа ориентирована на анализ основных мировоззренческих и методологических проблем, возникающих в науке на современном этапе ее развития, и получение представления о тенденциях исторического развития данной отрасли науки.
Программа разработана Институтом философии РАН при участии ведущих специалистов из МГУ им. М.В. Ломоносова, СПбГУ, ИИЕиТ и ряда других университетов. Программа одобрена экспертным советом по философии, социологии и культурологии Высшей аттестационной комиссии
^ 1.1. Образ математики как науки: философский аспект.
Проблемы, предмет, метод и функции философии
и методологии математики
Математика и естествознание. Математика как язык науки. Математика как система моделей. Математика и техника. Различие взглядов на математику философов и ученых (И. Кант, О. Конт, А. Пуанкаре, А. Эйнштейн, Н.Н. Лузин).
Математика как феномен человеческой культуры. Математика и философия. Математика и религия. Математика и искусство.
Взгляды на предмет математики. Синтаксический, семантический и прагматический аспекты в истолковании предмета математики. Особенности образования и функционирования математических абстракций. Отношение математики к действительности. Абстракции и идеальные объекты в математике.
Нормы и идеалы математической деятельности. Специфика методов математики. Доказательство – фундаментальная характеристика математического познания. Понятие аксиоматического построения теории. Основные типы аксиоматик (содержательная, полуформальная и формальная). Логика как метод математики и как математическая теория. Современные представления о соотношении индукции и дедукции в математике. Аналогия как общий метод развития математической теории. Обобщение и абстрагирование как методы развития математической теории. Место интуиции и воображения в математике. Современные представления о психологии и логике математического открытия. Мысленный эксперимент в математике. Доказательство с помощью компьютера.
Структура математического знания. Основные математические дисциплины. Историческое развитие логической структуры математики. Аксиоматический метод и классификация математического знания. Групповая классификация геометрических теорий (программа Ф. Клейна). Структурное и функциональное единство математики.
Философия математики, ее возникновение и этапы эволюции. Основные проблемы философии и методологии математики: установление сущности математики, ее предмета и методов, места математики в науке и культуре. Фундаменталистская и нефундаменталистская (социокультурная) философия математики. Философия математики как раздел философии и как общая методология математики.
Разделение истории математики и философии математики: соотношение фактической и логической истории, классификации фактов и их анализа.
Методология математики, ее возникновение и эволюция. Методы методологии математики (рефлексивный, проективный, нормативный). Внутренние и внешние функции методологии математики, ее прогностические ориентации.
^ 1.2. Философские проблемы возникновения
и исторической эволюции математики в культурном контексте
Причины и истоки возникновения математических знаний. Практические, религиозные основания первоначальных математических представлений.
Математика в догреческих цивилизациях. Догматическое (рецептурное) изложение результатов в математических текстах Древнего Востока. Проблема влияния египетской и вавилонской математики на математику Древней Греции.
Рождение математики как теоретической науки в Древней Греции. Пифагорейцы. Открытие несоизмеримости. Геометрическая алгебра и ее обоснование. Апории Зенона. Атомизм Демокрита и инфинитезимальные процедуры в Античности. Место математики в философии Платона.
Математика эпохи эллинизма. Синтез греческих и древневосточных социокультурных и научных традиций. Аксиоматическое построение математики в «Началах» Евклида и его философские предпосылки. Проблема актуальной бесконечности в античной математике. Место математики в философской концепции Аристотеля. Ценностные иерархии объектов, средств решения задач и классификация кривых в античной геометрии. «Арифметика» Диофанта и элементы возврата к вавилонской традиции.
Математика в древней и средневековой Индии. Отрицательные и иррациональные числа. Ритуальная геометрия трактата «Шулва-Сутра». Озарение как способ обоснования математических результатов. Математика и астрономия.
Математика в древнем и средневековом Китае. Средневековая математика Арабского Востока. «Арабские» цифры как источник новых математических знаний. Выделение алгебры в самостоятельную науку. Философия геометрии в связи с попытками доказать V постулат Евклида. Математика и астрономия. Математика в средневековой Европе. Практически ориентированные геометрические и тригонометрические сведения у Л. Пизанского (Фибоначчи). Развитие античных натурфилософских идей и математика. Схоластические теории изменения величин как предвосхищение инфинитезимальных методов Нового времени. Дискуссии по проблемам бесконечного и непрерывного в математике.
Математика в эпоху Возрождения. Проблема решения алгебраических 3-й и 4-й степеней как основание возникновения новых представлений о математических величинах. Алгебра Ф. Виета. Проблема перспективы в живописи и математика. «Философская теория» мнимых и комплексных чисел в «Алгебре» Р. Бомбелли.
Математика и научно-техническая революция начала Нового времени. Проблема бесконечности. Философский контекст аналитической геометрии. Достижения в области алгебры и их естественно-научное значение. Первые теоретико-вероятностные представления. «Вероятностная» гносеология в трудах философов Нового времени и проблема создания вероятностной логики (Лейбниц). Философский контекст открытия И. Ньютоном и Г. Лейбницем дифференциального и интегрального исчисления. Проблема логического обоснования алгоритмов дифференциального и интегрального исчисления. Критика Беркли и Ньютвентвейта. Нестандартный анализ А. Робинсона (1961) и новый взгляд на историю возникновения и первоначального развития анализа бесконечно малых.
Развитие математического анализа в XVIII в. Проблема оснований анализа. Философские идеи Б. Больцано в области теории функций. К. Вейерштрасс и арифметизация анализа. Теория и "философия действительного числа.
Эволюция геометрии в XIX в. и ее философское значение – открытие гиперболической геометрии и ее обоснования, интерпретации неевклидовой геометрии. «Эрлангенская программа» Ф. Клейна как новый взгляд на структуру геометрии. П.-С. Лаплас, его философские взгляды на сущность вероятности и становление теории вероятностей как точной науки.
Теория множеств как основание математики: Г. Кантор и создание «наивной» теории множеств. Открытие парадоксов теории множеств и их философское осмысление.
Математическая логика как инструмент обоснования математики и как основание математики. Взгляды Г. Фреге на природу математического мышления. Программа логической унификации математики.
«Основания геометрии» Д. Гильберта и становление геометрии как формальной аксиоматической дисциплины.
Философские проблемы теории вероятностей в конце XIX — середине XX в.
- ^ Закономерности развития математики
Внутренние и внешние факторы развития математической теории. Апология «чистой» математики (Г. Харди). Б. Гессен о социальных корнях механики Ньютона. Национальные математические школы и особенности национальных математических традиций (Л. Бибербах). Математика как совокупность «культурных элементов» (Р. Уайлдер). Концепция Ф. Китчера: эволюция математики как переход от исходной (примитивной) математической практики к последующим. Эстафеты в математике (М. Розов). Влияние потребностей и запросов других наук, техники на развитие математики.
Концепция научных революций Т. Куна и проблемы ее применения к анализу развития математики. Характеристики преемственности математического знания. Д. Даубен, Е. Коппельман, М. Кроу, Р. Уайлдер о специфике революций в математике. Математические парадигмы и их отличие от естественно-научных парадигм. Классификация революций в математике.
Фальсификационизм К. Поппера и концепция научных исследовательских программ И. Лакатоса. Возможности применения концепции научных исследовательских программ к изучению развития математики. Проблема существования потенциальных фальсификаторов в математике.
- ^ Философские концепции математики
Пифагореизм как первая философия математики. Число как причина вещей, как основа вещей и как способ их понимания. Числовой мистицизм. Влияние на пифагорейскую идеологию открытия несоизмеримых величин и парадоксов Зенона. Пифагореизм в сочинениях Платона. Критика пифагореизма Аристотелем.
Эмпирическая концепция математических понятий у Аристотеля. Первичность вещей перед числами. Объяснение строгости математического мышления. Обоснование эмпирического взгляда на математику у Бекона и Ньютона. Математический эмпиризм XVII – XIX вв. Эмпиризм в философии математики XIX столетия (Дж. Ст. Милль, Г. Гельмгольц, М. Паш). Современные концепции эмпиризма: натурализм Н. Гудмена, эмпирицизм И. Лакатоса, натурализм Ф. Китчера. Недостатки эмпирического обоснования математики.
Философские предпосылки априоризма. Установки априоризма. Умозрительный характер математических истин. Априоризм Лейбница.
Обоснование аналитичности математики у Лейбница. Понимание математики как априорного синтетического знания у Канта. Неевклидовы геометрии и философия математики Канта. Гуссерлевский вариант априоризма. Проблемы феноменологического обоснования математики.
Истоки формалистского понимания математического существования. Идеи Г. Кантора о соотношении имманентной и транзиентной истины. Формалистское понимание существования (А. Пуанкаре и Д. Гильберт).
Современные концепции математики. Эмпирическая философия математики. Критика евклидианской установки и идеи абсолютного обоснования математики в работах И. Лакатоса. Априористские идеи в современной философии и методологии математики. Программа Н. Бурбаки и концепция математического структурализма. Математический платонизм. Реализм как тезис об онтологической основе математики. Радикальный реализм К. Геделя. Реализм и проблема неиндуктивистского обоснования теории множеств. Физикализм. Социологические и социокультурные концепции природы математики.
^ 1.5. Философия и проблема обоснования математики
Проблема обоснования математического знания на различных стадиях его развития. Геометрическое обоснование алгебры в Античности. Проблема обоснования математического анализа в XVIII в. Поиски единой основы математики в рамках аксиоматического метода. Открытие парадоксов и становление современной проблемы обоснования математики.
Логицистская установка Г. Фреге. Критика психологизма и кантовского интуиционизма в понимании числа. Трудности концепции Г. Фреге. Представление математики на основе теории типов и логики отношений (Б. Рассел и А. Уайтхед). Результаты К. Геделя и А. Тарского. Методологические изъяны и основные достижения логицистского анализа математики.
Идеи Л. Брауэра по логицистскому обоснованию математики. Праинтуиция как исходная база математического мышления. Проблема существования. Учение Л. Брауэра о конструкции как о единственно законном способе оправдания математического существования. Брауэровская критика закона исключенного третьего. Недостаточность интуиционизма как программы обоснования математики. Следствия интуиционизма для современной математики и методологии математики.
Гильбертовская схема абсолютного обоснования математических теорий на основе финитной и содержательной метатеории. Понятие финитизма. Выход за пределы финитизма в теоретико-множественных и семантических доказательствах непротиворечивости арифметики (Г. Генцен, П. Новиков, Н. Нагорный). Теоремы К. Геделя и программа Д. Гильберта: современные дискуссии.
^ 1.6. Философско-методологические и исторические проблемы математизации науки
Прикладная математика. Логика и особенности приложений математики. Математика как язык науки. Уровни математизации знания: количественная обработка экспериментальных данных, построение математических моделей индивидуальных явлений и процессов, создание математизированных теорий.
Специфика приложения математики в различных областях знания. Новые возможности применения математики, предлагаемые теорией категорий, теорией катастроф, теорией фракталов и др. Проблема поиска адекватного математического аппарата для создания новых приложений.
Математическая гипотеза как метод развития физического знания. Математическое предвосхищение. «Непостижимая эффективность» математики в физике: проблема рационального объяснения. Этапы математизации в физике. Неклассическая фаза (теория относительности, квантовая механика). Проблема единственности физической теории, связанная с богатыми возможностями выбора подходящих математических конструкций. Постклассическая фаза (аксиоматические и конструктивные теории поля и др.). Перспективы математизации нефизических областей естествознания. Границы, трудности и перспективы математизации гуманитарного знания. Вычислительное, концептуальное и метафорическое применения математики. Границы применимости вероятностно-статистических методов в научном познании. «Моральные применения» теории вероятностей – иллюзии и реальность.
Математическое моделирование: предпосылки, этапы построения модели, выбор критериев адекватности, проблема интерпретации. Сравнительный анализ математического моделирования в различных областях знания. Математическое моделирование в экологии: историко-методологический анализ. Применение математики в финансовой сфере: история, результаты и перспективы. Математические методы и модели и их применение в процессе принятия решений при управлении сложными социально-экономическими системами: возможности, перспективы и ограничения. ЭВМ и математическое моделирование. Математический эксперимент.