Программы кандидатских экзаменов «история и философия науки» («Философия науки») москва 2004 удк 167/168(079. 1) Ббк 87. 5я77 П78

Вид материалаПрограмма-минимум

Содержание


Рекомендуемая основная литература
Дополнительная литература
1.1. Образ математики как науки: философский аспект.
1.2. Философские проблемы возникновения
Закономерности развития математики
Философские концепции математики
1.5. Философия и проблема обоснования математики
1.6. Философско-методологические и исторические проблемы математизации науки
Подобный материал:
1   2   3   4   5   6   7   8   9   ...   12
^

Рекомендуемая основная литература


1. Вебер M. Избранные произведения. М., 1990.

2. Вернадский В.И. Размышления натуралиста. Научная мысль как планетарное явление. М., 1978.

3. Глобальные проблемы и общечеловеческие ценности. М., 1990.

4. Кайре А. Очерки истории философской мысли. О влиянии философских концепций на развитие научных теорий. М., 1985.

5. Кун Т. Структура научных революций. М., 2001.

6. Малкей М. Наука и социология знания. М., 1983.

7. Никифоров А.Л. Философия науки: история и методология. М., 1998.

8. Огурцов А.П. Дисциплинарная структура науки. М., 1988.

9. Поппер К. Логика и рост научного знания. М., 1983.

10. Степин B.C. Философия науки. Общие проблемы. М., 2004.

11. Традиции и революции в развитии науки. М., 1991.

12. Философия и методология науки / Под ред. В.И. Купцова. М., 1996.
^

Дополнительная литература


1. Гайденко П.П. Эволюция понятия науки (XVII—XVIII вв.). М., 1987.

2. Зотов А.Ф. Современная западная философия. М., 2001.

3. Кезин А.В. Наука в зеркале философии. М., 1990.

4. Келле В.Ж. Наука как компонент социальной системы. М., 1988.

5. Косарева Л.Н. Социокультурный генезис науки: философский аспект проблемы. М., 1989.

6. Лекторский В А. Эпистемология классическая и неклассическая. М., 2000.

7. Мамчур ЕА. Проблемы социокультурной детерминации научного знания. М., 1987.

8. Моисеев Н.Н. Современный рационализм. М., 1995.

9. Наука в культуре. М., 1998.

10. Пригожин И., Стенгерс И. Порядок из хаоса. М., 1986.

11. Принципы историографии естествознания. XX век / Отв. ред. И.С. Тимофеев. М., 2001.

12. Разум и экзистенция / Под ред. И.Т. Касавина и В.Н. Поруса. СПб., 1999.

13. Современная философия науки: Хрестоматия / Сост. А.А. Печенкин. М., 1996.

14. Степин B.C. Теоретическое знание. Структура, историческая эволюция. М., 2000.

15. Степин B.C., Горохов В.Г., Розов МА. Философия науки и техники. М., 1991.

16. Фейерабенд П. Избранные труды по методологии науки. М., 1986.

17. Философия / Под ред. В.Д. Губина, Т.Ю. Сидориной. М., 2004.

18. Хюбнер К. Истина мифа. М., 1996.


II. Современные философские проблемы областей научного знания

  1. Философские проблемы математики



Введение



Настоящая программа философской части кандидатского экзамена по курсу «История и философия науки» предназначена для аспирантов и соискателей ученых степеней всех научных специальностей, относящихся к блоку математических наук. Программа ориентирована на анализ основных мировоззренческих и методологических проблем, возникающих в науке на современном этапе ее развития, и получение представления о тенденциях исторического развития данной отрасли науки.

Программа разработана Институтом философии РАН при участии ведущих специалистов из МГУ им. М.В. Ломоносова, СПбГУ, ИИЕиТ и ряда других университетов. Программа одобрена экспертным советом по философии, социологии и культурологии Высшей аттестационной комиссии


^ 1.1. Образ математики как науки: философский аспект.

Проблемы, предмет, метод и функции философии

и методологии математики


Математика и естествознание. Математика как язык науки. Математика как система моделей. Математика и техника. Различие взглядов на математику философов и ученых (И. Кант, О. Конт, А. Пуанкаре, А. Эйнштейн, Н.Н. Лузин).

Математика как феномен человеческой культуры. Математика и философия. Математика и религия. Математика и искусство.

Взгляды на предмет математики. Синтаксический, семантический и прагматический аспекты в истолковании предмета математики. Особенности образования и функционирования математических абстракций. Отношение математики к действительности. Абстракции и идеальные объекты в математике.

Нормы и идеалы математической деятельности. Специфика методов математики. Доказательство – фундаментальная характеристика математического познания. Понятие аксиоматического построения теории. Основные типы аксиоматик (содержательная, полуформальная и формальная). Логика как метод математики и как математическая теория. Современные представления о соотношении индукции и дедукции в математике. Аналогия как общий метод развития математической теории. Обобщение и абстрагирование как методы развития математической теории. Место интуиции и воображения в математике. Современные представления о психологии и логике математического открытия. Мысленный эксперимент в математике. Доказательство с помощью компьютера.

Структура математического знания. Основные математические дисциплины. Историческое развитие логической структуры математики. Аксиоматический метод и классификация математического знания. Групповая классификация геометрических теорий (программа Ф. Клейна). Структурное и функциональное единство математики.

Философия математики, ее возникновение и этапы эволюции. Основные проблемы философии и методологии математики: установление сущности математики, ее предмета и методов, места математики в науке и культуре. Фундаменталистская и нефундаменталистская (социокультурная) философия математики. Философия математики как раздел философии и как общая методология математики.

Разделение истории математики и философии математики: соотношение фактической и логической истории, классификации фактов и их анализа.

Методология математики, ее возникновение и эволюция. Методы методологии математики (рефлексивный, проективный, нормативный). Внутренние и внешние функции методологии математики, ее прогностические ориентации.


^ 1.2. Философские проблемы возникновения

и исторической эволюции математики в культурном контексте


Причины и истоки возникновения математических знаний. Практические, религиозные основания первоначальных математических представлений.

Математика в догреческих цивилизациях. Догматическое (рецептурное) изложение результатов в математических текстах Древнего Востока. Проблема влияния египетской и вавилонской математики на математику Древней Греции.

Рождение математики как теоретической науки в Древней Греции. Пифагорейцы. Открытие несоизмеримости. Геометрическая алгебра и ее обоснование. Апории Зенона. Атомизм Демокрита и инфинитезимальные процедуры в Античности. Место математики в философии Платона.

Математика эпохи эллинизма. Синтез греческих и древневосточных социокультурных и научных традиций. Аксиоматическое построение математики в «Началах» Евклида и его философские предпосылки. Проблема актуальной бесконечности в античной математике. Место математики в философской концепции Аристотеля. Ценностные иерархии объектов, средств решения задач и классификация кривых в античной геометрии. «Арифметика» Диофанта и элементы возврата к вавилонской традиции.

Математика в древней и средневековой Индии. Отрицательные и иррациональные числа. Ритуальная геометрия трактата «Шулва-Сутра». Озарение как способ обоснования математических результатов. Математика и астрономия.

Математика в древнем и средневековом Китае. Средневековая математика Арабского Востока. «Арабские» цифры как источник новых математических знаний. Выделение алгебры в самостоятельную науку. Философия геометрии в связи с попытками доказать V постулат Евклида. Математика и астрономия. Математика в средневековой Европе. Практически ориентированные геометрические и тригонометрические сведения у Л. Пизанского (Фибоначчи). Развитие античных натурфилософских идей и математика. Схоластические теории изменения величин как предвосхищение инфинитезимальных методов Нового времени. Дискуссии по проблемам бесконечного и непрерывного в математике.

Математика в эпоху Возрождения. Проблема решения алгебраических 3-й и 4-й степеней как основание возникновения новых представлений о математических величинах. Алгебра Ф. Виета. Проблема перспективы в живописи и математика. «Философская теория» мнимых и комплексных чисел в «Алгебре» Р. Бомбелли.

Математика и научно-техническая революция начала Нового времени. Проблема бесконечности. Философский контекст аналитической геометрии. Достижения в области алгебры и их естественно-научное значение. Первые теоретико-вероятностные представления. «Вероятностная» гносеология в трудах философов Нового времени и проблема создания вероятностной логики (Лейбниц). Философский контекст открытия И. Ньютоном и Г. Лейбницем дифференциального и интегрального исчисления. Проблема логического обоснования алгоритмов дифференциального и интегрального исчисления. Критика Беркли и Ньютвентвейта. Нестандартный анализ А. Робинсона (1961) и новый взгляд на историю возникновения и первоначального развития анализа бесконечно малых.

Развитие математического анализа в XVIII в. Проблема оснований анализа. Философские идеи Б. Больцано в области теории функций. К. Вейерштрасс и арифметизация анализа. Теория и "философия действительного числа.

Эволюция геометрии в XIX в. и ее философское значение – открытие гиперболической геометрии и ее обоснования, интерпретации неевклидовой геометрии. «Эрлангенская программа» Ф. Клейна как новый взгляд на структуру геометрии. П.-С. Лаплас, его философские взгляды на сущность вероятности и становление теории вероятностей как точной науки.

Теория множеств как основание математики: Г. Кантор и создание «наивной» теории множеств. Открытие парадоксов теории множеств и их философское осмысление.

Математическая логика как инструмент обоснования математики и как основание математики. Взгляды Г. Фреге на природу математического мышления. Программа логической унификации математики.

«Основания геометрии» Д. Гильберта и становление геометрии как формальной аксиоматической дисциплины.

Философские проблемы теории вероятностей в конце XIX — середине XX в.

    1. ^ Закономерности развития математики


Внутренние и внешние факторы развития математической теории. Апология «чистой» математики (Г. Харди). Б. Гессен о социальных корнях механики Ньютона. Национальные математические школы и особенности национальных математических традиций (Л. Бибербах). Математика как совокупность «культурных элементов» (Р. Уайлдер). Концепция Ф. Китчера: эволюция математики как переход от исходной (примитивной) математической практики к последующим. Эстафеты в математике (М. Розов). Влияние потребностей и запросов других наук, техники на развитие математики.

Концепция научных революций Т. Куна и проблемы ее применения к анализу развития математики. Характеристики преемственности математического знания. Д. Даубен, Е. Коппельман, М. Кроу, Р. Уайлдер о специфике революций в математике. Математические парадигмы и их отличие от естественно-научных парадигм. Классификация революций в математике.

Фальсификационизм К. Поппера и концепция научных исследовательских программ И. Лакатоса. Возможности применения концепции научных исследовательских программ к изучению развития математики. Проблема существования потенциальных фальсификаторов в математике.

    1. ^ Философские концепции математики


Пифагореизм как первая философия математики. Число как причина вещей, как основа вещей и как способ их понимания. Числовой мистицизм. Влияние на пифагорейскую идеологию открытия несоизмеримых величин и парадоксов Зенона. Пифагореизм в сочинениях Платона. Критика пифагореизма Аристотелем.

Эмпирическая концепция математических понятий у Аристотеля. Первичность вещей перед числами. Объяснение строгости математического мышления. Обоснование эмпирического взгляда на математику у Бекона и Ньютона. Математический эмпиризм XVII – XIX вв. Эмпиризм в философии математики XIX столетия (Дж. Ст. Милль, Г. Гельмгольц, М. Паш). Современные концепции эмпиризма: натурализм Н. Гудмена, эмпирицизм И. Лакатоса, натурализм Ф. Китчера. Недостатки эмпирического обоснования математики.

Философские предпосылки априоризма. Установки априоризма. Умозрительный характер математических истин. Априоризм Лейбница.

Обоснование аналитичности математики у Лейбница. Понимание математики как априорного синтетического знания у Канта. Неевклидовы геометрии и философия математики Канта. Гуссерлевский вариант априоризма. Проблемы феноменологического обоснования математики.

Истоки формалистского понимания математического существования. Идеи Г. Кантора о соотношении имманентной и транзиентной истины. Формалистское понимание существования (А. Пуанкаре и Д. Гильберт).

Современные концепции математики. Эмпирическая философия математики. Критика евклидианской установки и идеи абсолютного обоснования математики в работах И. Лакатоса. Априористские идеи в современной философии и методологии математики. Программа Н. Бурбаки и концепция математического структурализма. Математический платонизм. Реализм как тезис об онтологической основе математики. Радикальный реализм К. Геделя. Реализм и проблема неиндуктивистского обоснования теории множеств. Физикализм. Социологические и социокультурные концепции природы математики.


^ 1.5. Философия и проблема обоснования математики


Проблема обоснования математического знания на различных стадиях его развития. Геометрическое обоснование алгебры в Античности. Проблема обоснования математического анализа в XVIII в. Поиски единой основы математики в рамках аксиоматического метода. Открытие парадоксов и становление современной проблемы обоснования математики.

Логицистская установка Г. Фреге. Критика психологизма и кантовского интуиционизма в понимании числа. Трудности концепции Г. Фреге. Представление математики на основе теории типов и логики отношений (Б. Рассел и А. Уайтхед). Результаты К. Геделя и А. Тарского. Методологические изъяны и основные достижения логицистского анализа математики.

Идеи Л. Брауэра по логицистскому обоснованию математики. Праинтуиция как исходная база математического мышления. Проблема существования. Учение Л. Брауэра о конструкции как о единственно законном способе оправдания математического существования. Брауэровская критика закона исключенного третьего. Недостаточность интуиционизма как программы обоснования математики. Следствия интуиционизма для современной математики и методологии математики.

Гильбертовская схема абсолютного обоснования математических теорий на основе финитной и содержательной метатеории. Понятие финитизма. Выход за пределы финитизма в теоретико-множественных и семантических доказательствах непротиворечивости арифметики (Г. Генцен, П. Новиков, Н. Нагорный). Теоремы К. Геделя и программа Д. Гильберта: современные дискуссии.


^ 1.6. Философско-методологические и исторические проблемы математизации науки


Прикладная математика. Логика и особенности приложений математики. Математика как язык науки. Уровни математизации знания: количественная обработка экспериментальных данных, построение математических моделей индивидуальных явлений и процессов, создание математизированных теорий.

Специфика приложения математики в различных областях знания. Новые возможности применения математики, предлагаемые теорией категорий, теорией катастроф, теорией фракталов и др. Проблема поиска адекватного математического аппарата для создания новых приложений.

Математическая гипотеза как метод развития физического знания. Математическое предвосхищение. «Непостижимая эффективность» математики в физике: проблема рационального объяснения. Этапы математизации в физике. Неклассическая фаза (теория относительности, квантовая механика). Проблема единственности физической теории, связанная с богатыми возможностями выбора подходящих математических конструкций. Постклассическая фаза (аксиоматические и конструктивные теории поля и др.). Перспективы математизации нефизических областей естествознания. Границы, трудности и перспективы математизации гуманитарного знания. Вычислительное, концептуальное и метафорическое применения математики. Границы применимости вероятностно-статистических методов в научном познании. «Моральные применения» теории вероятностей – иллюзии и реальность.

Математическое моделирование: предпосылки, этапы построения модели, выбор критериев адекватности, проблема интерпретации. Сравнительный анализ математического моделирования в различных областях знания. Математическое моделирование в экологии: историко-методологический анализ. Применение математики в финансовой сфере: история, результаты и перспективы. Математические методы и модели и их применение в процессе принятия решений при управлении сложными социально-экономическими системами: возможности, перспективы и ограничения. ЭВМ и математическое моделирование. Математический эксперимент.