О. О. Созінов (Інститут агроекології та біотехнології уаан)
Вид материала | Документы |
- О. О. Созінов (Інститут агроекології та біотехнології уаан), 10670.69kb.
- «Інститут харчової біотехнології та геноміки нан україни» Новітні технології біоенергоконверсії, 191.08kb.
- Технічний регламент, 1714.19kb.
- Конспект лекцій дисципліни «основи біотехнології рослин», 768.55kb.
- Щодо виконання науково-дослідних, 847.87kb.
- Державна установа „Інститут харчової біотехнології та геноміки Національної академії, 21.57kb.
- Національний технічний університет україни “київський політехнічний інститут” Факультет, 11.38kb.
- Опис модуля назва модуля, 15.02kb.
- Кропивко Максим Михайлович. Інвестиційне забезпечення селянських (фермерських) господарств:, 154.06kb.
- Текст роботи: інститут аграрної економіки української академії аграрних наук сук петро, 536.56kb.
Отже, за другим законом термодинаміки, будь-яка робота супроводжується трансформацією високоякісної енергії в енергію нижчої та найнижчої якості — тепло — й призводить до зростання ентропії.
Знизити ентропію в термодинамічно закритій системі, яка не отримує енергії ззовні, неможливо — адже вся якісна енергія такої системи врешті-решт перетворюється на низькоякісну, деградує до тепла. Проте у відкритій термодинамічній системі можливо протидіяти зростанню ентропії, використовуючи для цього високоякісну енергію, що надходить іззовні, й відводячи низькоякісну енергію за межі системи.
Всесвіт є закритою системою, й у ньому ентропія постійно зростає. Натомість біосфера є відкритою системою, яка підтримує власний низький рівень ентропії, використовуючи для цього зовнішнє джерело якісної променистої енергії — Сонце — й розсіюючи в космічний простір низькоякісну теплову енергію. Тому, крім ентропії фізичної (ентропії замкненої системи), в екології використовують поняття «ентропія екологічна» — кількість необоротно розсіяної в просторі теплової енергії, яка, проте, компенсується трансформованою енергією зовнішнього джерела — Сонця.
Ж ^ Ентропія екологічна. В Космосі ентропія зростає з плином часу, але всередині хаосу існують острівці порядку. Один із найважливіших серед них — життя.
Живі системи за рахунок високовпорядкованої енергії Сонця з низьковпорядкованих компонентів довкілля створюють свій,
вищий, ніж у довкіллі, порядок. За популярним серед фізиків висловом, живе живиться не енергією, воно живиться чужим порядком (наприклад, порядком сонячного світла, хімічних зв'язків органічної речовини). В процесі самовпорядковування жива речовина необоротно розсіює енергію, яка плине крізь екосистеми, тобто створює ентропію екологічну.
Теплове розсіяння енергії екосистемами відбувається двома основними шляхами: 1) звичайних утрат тепла через різницю в температурах біоти й довкілля; 2) втрат тепла організмами та їх угрупованнями в процесах метаболізму (зокрема дихання) у зв'язку з вивільненням енергії в ході екзотермічних реакцій.
З погляду другого закону термодинаміки біосфера не є «безвідходним виробництвом»: відходи її діяльності — це не речовина, а це низькоякісна теплова енергія, що випромінюється за межі планети, тобто ентропія.
Вважають, що еволюція біосфери відбувалася в напрямі зменшення екологічної ентропії. Адже за постійної кількості енергії, що надходить, чим менше тепла випромінюється, тим більше виконується корисної роботи, тим упорядкованішою стає система. Наприклад, у системі продуцент—редуцент корисна робота полягає в протидії розпаду тіл лише двох ланок — продуцентів і реду-центів, а в системі продуцент—консумент—редуцент — уже в підтриманні організації трьох компонентів. За однакової кількості зовнішньої енергії в обох випадках друга система, котра здійснює більше корисної роботи, випромінюватиме менше тепла, тобто матиме нижчу екологічну ентропію. З цього випливає, що чим довшими є ланцюги живлення, тим вони енергетично досконаліші.
^ Рослини поглинають енергію Сонця. Ця енергія циркулює
в системі, яку ми називаємо біотою й можемо зобразити
у вигляді багатосхідчастої піраміди. Нижня сходинка — ґрунт.
Сходинка, на якій розташовуються рослини, спирається
на ґрунт; сходинка, на якій розміщуються комахи, — на рослини;
птахи й гризуни — на комах, і так далі, через різні групи тварин,
до вершини, на якій перебувають великі хижаки.
^ Види, що становлять одну сходинку, об'єднуються
не походженням чи зовнішньою схожістю, а типом їжі... Піт
залежності, які відображають передавання енергії, що міститься
в їжі, від її первинного джерела (рослини) через низку організмів,
кожен з яких поїдає попереднього й з'їдається наступним,
називаються ланцюгами живлення... Земля, таким чином, —
це не просто ґрунт, а джерело енергп, що циркулює в системі,
69
Розділ І Сучасні підходи в науці про довкілля
Г п а є а 2
Біоекологія
яка складається з ґрунту, рослин і тварин. Ланцюги живлення — це живі канали, що подають енергію вгору, а смерть і тління повертають її в ґрунт. Система не замкнена — частина енергії втрачається в процесі тління, частина додається поглинанням із повітря, частина накопичується в ґрунті, торфі й лісах-довгожителях, але це система, яка діє постійно, своєрідний фонд життя, що повільно нагромаджується й перебуває в постійному обізі.
Л. Олдо,
найвидатніший
американський еколог,
лісівник, мисливствознавець
Велика кількість біомаси та енергії під час переходу з одного трофічного рівня на інший розсіюється, витрачається на підтримання температури тіла організмів, на перетворення в СО2; не вся біомаса нижчого рівня використовується як їжа організмами вищого рівня й не вся засвоюється організмами. Інакше кажучи, за другим законом термодинаміки, енергія перетворюється на тепло, що розсіюється в довкіллі й втрачається в просторі. Як зазначалося вище, за підрахунками екологів, лише 10 % біомаси одного трофічного рівня перетворюється на біомасу другого рівня (так зване правило десяти процентів).
■ ^ Потік енергії в ланцюгах живлення залежить від довжини конкретного ланцюга, яка визначається кількістю трофічних рівнів. Продуценти, що синтезують органічну речовину, належать до першого трофічного рівня. Консументи, які поїдають органічну речовину продуцентів, наприклад травоїдні тварини (фітофаги), — до другого рівня; консументи, котрі поїдають фітофагів (наприклад, хижаки, що полюють на травоїдних), перебувають на третьому рівні й т. д. Редуценти, які розкладають органічні речовини на мінеральні компоненти, перебувають на останньому трофічному рівні й завершують ланцюг живлення. Вони остаточно вивільняють енергію, зв'язану раніше продуцентами.
Поїдаючи або розкладаючи органічну речовину представників попереднього трофічного рівня, консументи чи редуценти дістають речовину й енергію, необхідні для процесів метаболізму, побудови й підтримання власного тіла. При цьому близько 90 % енергії, запасеної в спожитій органіці, розсіюється у вигляді тепла й лише в середньому 10 % використовується на побудову та підтримання тіла того, хто цю органічну речовину спожив. На-
70
приклад, консументи першого порядку (фітофаги), які поїдають продуцентів, зберігають у вигляді органічної речовини свого тіла лише 10 % енергії, зв'язаної рослинами в процесі фотосинтезу; в тілі консумента другого порядку (зоофага, що живиться фітофагами) запасається тільки 1 % поглинутої сонячної енергії, а хижак, який живиться цим зоофагом (консумент третього порядку), в своїх клітинах містить лише 0,1 % сонячної енергії, зв'язаної рослинами.
Продукти життєдіяльності й відмерлі тіла як продуцентів, так і консументів стають джерелом енергії для редуцентів — бактерій і грибів, що розкладають (мінералізують) цю органічну речовину й одержують від 0,01 до 10 % запасеної енергії Сонця залежно від того, до якого трофічного рівня належав об'єкт живлення. Через такі великі втрати енергії під час переходу її з одного трофічного рівня на наступний ланцюги живлення не можуть бути довгими й зазвичай налічують не більше ніж п'ять ланок: ланку продуцентів, одну-три ланки консументів, ланку редуцентів.
^ Кругообіг речовин у біосфері. Існування життя на Землі залежить не лише від потоку енергії, а й від кругообігу речовин у біосфері. Будь-які живі організми дістають із довкілля хімічні елементи, котрі потім використовують на побудову чи підтримання своїх тіл і на забезпечення процесів розмноження. Всього відомо близько 80 елементів, необхідних біоті. З продуктами життєдіяльності або після смерті ці елементи знову потрапляють у довкілля — атмосферу, гідросферу чи літосферу, й у подальшому використовуються іншими організмами. Отже, в біосфері постійно відбувається кругообіг речовин. Прямо чи опосередковано цей кругообіг здійснюється за рахунок сонячної енергії та сил гравітації.
Хімічні елементи, які використовуються живою речовиною у великих кількостях і зазвичай становлять не менш як 0,1 % загальної маси організму, називають макроелементами. До макроелементів належать вуглець, кисень, водень, азот, фосфор, сірка, калій, магній і кальцій. Усі ці елементи, за винятком кисню й водню, називають також біогенними елементами, оскільки жива речовина вибірково й у значній кількості поглинає їх із неживого середовища й концентрує в клітинах. Елементи, необхідні організмам у менших кількостях (до 0,1 %), належать до мікроелементів. Це мідь, цинк, молібден, бор, йод, силіцій та ін.
71
Розділ І Сучасні підходи в науці про довкілля
^ Глава 2
Біоекопогія
Макро- й мікроелементи використовуються живими істотами в складі певних молекул. Елемент, що входить до складу молекули, з якої він може бути засвоєний організмом, називають доступним, або елементом у доступній формі. Часто для різних груп організмів доступні форми одного й того самого елемента різні.
^ Кругообіги кисню й водню. Кисень і водень входять до складу всіх органічних сполук. Вони поглинаються продуцентами в складі води й вуглекислого газу в процесі фотосинтезу, всіма іншими організмами — з органічною речовиною, створеною продуцентами, під час дихання (з атмосфери чи з водного розчину) й уживання питної води. Як кінцеві продукти біологічного кругообігу, водень і частина кисню повертаються в неживе середовище також у вигляді води, а кисень, окрім того, виділяється в молекулярній формі в атмосферу рослинами-продуцентами як один із кінцевих продуктів фотосинтезу.
^ Кругообіг вуглецю. Вуглець — це основа органічних речовин. Він входить до складу білків, жирів, вуглеводів, нуклеїнових кислот та інших речовин, необхідних для існування живої речовини. До первинних джерел вуглецю в біосфері належать атмосферний вуглекислий газ, що становить 0,036 % загального об'єму тропосфери, й вуглекислий газ, розчинений у воді Світового океану, де його кількість у 50 разів виша, ніж в атмосфері.
Неорганічний вуглець доступний лише для продуцентів — рослин і невеликої групи хемотрофних бактерій. Унаслідок процесів фото- й хемосинтезу вуглець зв'язується в молекули цукрів, які потому використовуються для створення інших органічних сполук. У такому вигляді вуглець стає доступним для консументів і редуцентів. У результаті процесів дихання й бродіння органічні речовини в клітинах окиснюються з виділенням енергії й вуглекислого газу, який знову або потрапляє в атмосферу, або розчиняється у воді, а також утворює йони карбонатів. Органічна речовина загиблих особин також розпадається з утворенням вуглекислого газу. Цей процес здійснюється редуцентами. Якщо з якихось причин відмерлі рештки не були використані редуцентами, вони нагромаджуються в літосфері і з часом трансформуються у вуглецевмісні копалини — торф, вугілля, нафту.
^ Кругообіг азоту (рис. 2.2). Атмосферний азот, що перебуває в молекулярній формі, доступний тільки для нечисленної групи азотфіксувальних бактерій і синьозелених водоростей. Азотфікса-тори, засвоюючи молекулярний азот, залучають його до складу
72
З Атмосферний молекулярний азот (N2)
органічної речовини свого тіла, тобто переводять в органічну форму. Після відмирання органічний азот трансформується в мінеральну форму (амоній, нітрати або нітрити) амоніфікуючими й нітрифікуючими бактеріями. Мінеральний азот доступний лише для рослин, які засвоюють його й переводять в органічну фор-
Азотфіксувальні
бактерії та Ісиньозелемі водорості
Органічний азот (амінокислоти, нуклеотиди, Г—:^л> Тварини, АТФ та ін.)
Органічний азот (амінокислоти, нуклеотиди, АТФ та ін.) }
й нітрифікуючі терн
Органічний азот (амінокислоти, З нуклеотиди, АТФ та ін.)
(NHJ, NOi, NO2)
Рис. 2.2 Кругообіг азоту
му (зокрема в білки й нуклеїнові кислоти), і в такому вигляді азот стає доступним для консументів — тварин і грибів. Після їх відмирання азот знову використовується бактеріями амоніфікато-рами й нітрифікаторами. Мінеральний азот використовують також бактерії денітрифікатори, які, врешті-решт, переводять його в молекулярну форму й повертають в атмосферу. Цикл замикається.
^ Кругообіг фосфору. На відміну від азоту, джерелом фосфору є не атмосфера, а земна кора. В процесі вивітрювання гірських порід фосфор переходить у ґрунтовий розчин і стає доступним для рослин. Він входить передусім до складу нуклеїнових кислот, аденозинтрифосфорної кислоти (АТФ), фосфоліпідів. Із цими органічними речовинами фосфор передається ланцюгами жив-
73
Розділ І Сучасні підходи в науці про довкілля
^ Глава 2
Біоекологія
лення від продуцентів до консументів і повертається в грунт у вигляді органічних решток і продуктів життєдіяльності. В результаті процесів мінералізації, які здійснюються бактеріями-редуцентами, фосфор знову переходить у неорганічні форми й стає доступним для рослин.
Проте в природі найчастіше саме нестача фосфору стримує розвиток біоти. З одного боку, фосфорні сполуки швидко вимиваються в Світовий океан. Цьому сприяють процеси ерозії грунту. Багато фосфору виноситься в океан і з неочищеними стічними водами. В океані цей фосфор частково використовується мікро- й макроскопічними водоростями, а потім споживається морськими консументами та редуцентами. Деяка частина фосфору може перевідкладатися на суші. Наприклад, послід морських рибоїдних птахів, який містить багато фосфору, нагромаджується в пташиних колоніях і на пташиних базарах, утворюючи так зване гуано — корисну копалину, що інтенсивно добувається в деяких країнах і використовується для виробництва фосфатних мінеральних добрив (наприклад, у Чилі). Але більша частина фосфору нагромаджується на дні з відмерлими рештками морської біоти. Цей фосфор може знову стати доступним для біоти тільки з часом у геологічному вимірі, наприклад після підняття певних ділянок морського дна (щоправда, сьогодні людина вже почала розробляти й морські родовища фосфоритів). З іншого боку, на суші значна частина мінерального фосфору утворює нерозчинні комплекси з ґрунтовими частинками й стає недоступною для продуцентів, отже, й для інших ланок трофічних ланцюгів. Лише деякі ґрунтові гриби здатні вилучати фосфорні сполуки з цих комплексів.
^ Кругообіг сірки. Сірка — це необхідний компонент багатьох органічних речовин, серед яких передусім слід зазначити амінокислоту цистеїн.
Головним джерелом сірки є розчинені у воді продукти вивітрювання гірських порід (найчастіше сульфіди заліза — основний компонент колчеданів) або сірководень і сірчистий газ, які виділяються в атмосферу вулканами, гейзерами, гарячими джерелами. Сірководень, окиснений атмосферним киснем до сірчистого газу, розчиняється у водяній парі атмосфери й випадає з дощем на поверхню планети. До складу живої речовини сірка потрапляє шляхом поглинання розчинених у воді йонів сульфатів рослинами-продуцентами. Потім сірка в складі рослин-
74
них білків ланцюгами живлення потрапляє до консументів і реду-центів. У анаеробних умовах (наприклад, у болотах) редуценти розкладають білки з виділенням сірки у вигляді сірководню, який може бути окиснений до молекулярної сірки або до розчинних сульфатів і сульфідів. У такій формі сірка знову стає доступною для продуцентів.
Сьогодні кругообіг сірки під впливом людини зазнає суттєвих змін: майже третина сірки, що циркулює в біосфері, потрапляє в атмосферу з димогазовими викидами заводів, фабрик і теплових електростанцій. Ця «зайва» сірка, розчиняючися в атмосфері з утворенням сірчаної й сірчистої кислот, випадає у вигляді кислотних дощів, які призводять до швидкої деградації багатьох екосистем.
^ Кругообіги калію, магнію та кальцію. Ці елементи у вигляді йонів потрапляють у живу речовину в процесі поглинання води рослинами, а також під час уживання питної води. Вони виконують різноманітні функції. Наприклад, калій необхідний для роботи калій-натрієвого насоса клітин, магній — обов'язкова складова хлорофілу, кальцій потрібний для підтримання постійного рН цитоплазми, є головним компонентом панцирів, будиночків, скелетів багатьох тварин. Подібно до азоту, фосфору й сірки, ці елементи мігрують трофічними ланцюгами від продуцентів через консументи до редуцентів. Після загибелі організму вони швидко переходять у водні розчини й знову стають придатними для подальшого використання.
У морях кальцій і магній частково вилучаються з біологічного кругообігу й консервуються в осадових породах. Наприклад, мікроскопічні морські водорості кокколітофориди перевідклада-ють кальцій у вигляді карбонатів на поверхні клітин, утворюючи так звані кокколіти. Після відмирання клітин кокколіти не встигають цілком розчинитись у воді й осідають на дно, формуючи крейдяні осадові породи. Лише в геологічному вимірі часу, після підняття певних ділянок дна, кальцій, нагромаджений у крейді, вивільнюється в процесі вивітрювання й знову стає доступним для біоти.
II ^ Великий кругообіг речовин і вплив на нього антропогенного фактора. Енергія Сонця й сили гравітації рухають два кругообіги речовин: біологічний та геологічний (рис. 2.3). Біологічний кругообіг швидкий і розімкнений: початкова й кінцева ланки
75
Розділ І Сучасні підходи в науці про довкілля
Гл а в а 2
Біоекологія
І І
замикаються через доступні неорганічні речовини. Геологічний кругообіг повільний і замкнений. Частина речовин із біологічного кругообігу надходить у геологічний у вигляді відмерлих решток, утворюючи осадові породи, які з часом під впливом тиску, температури та інших факторів трансформуються в граніти. Тектонічні підняття спричинюють винесення частини гранітних порід на поверхню. Граніти вивітрюються, й, як наслідок, утворюється фонд доступних речовин, що в подальшому знову залучаються до біологічного кругообігу.
Процеси кругообігу речовин у біосфері здійснюються збалансовано. Переважна більшість речовин, залучених до біологічного кругообігу, повертається в мінеральний стан і стає доступною для повторного використання живою речовиною. Лише невелика частина відкладається в осадових породах, але ці втрати компенсуються речовинами, які вивільнюються з гірських порід у результаті процесів вивітрювання.
Баланс та узгодженість біологічного й геологічного циклів досягаються завдяки живій речовині: за рахунок тривалих процесів видоутворення в разі появи нових ресурсів чи нових умов середовища й за рахунок формування численних прямих, зворотних і непрямих зв'язків між різними організмами та факторами середовища.
Зазвичай прискорення вивітрювання гірських порід спричиняє зростання кількості біогенних речовин, що, своєю чергою, стимулює збільшення кількості живої речовини й урешті-решт підвищує інтенсивність процесів винесення речовин у Світовий океан. Це призводить до інтенсивнішого нагромадження донних осадів. Кількість доступних речовин у біосфері починає швидко зменшуватися. Біосфера переходить на «голодний» режим, що супроводжується масовими вимираннями видів, посиленням конкурентної боротьби за ресурси й прискоренням процесів утворення нових, більш конкурентоспроможних та «економних» видів. Проте вимирання відбувається набагато швидше, ніж видоутворення. За приклад можуть правити кам'яновугільний і крейдовий періоди, коли надзвичайно швидко нагромаджувались осадові породи внаслідок катастрофічного вимирання багатьох видів палеозойської та ранньомезозойської флори й фауни. Вимирання завершувалося появою на планеті нових класів і типів (відділів) тварин і рослин. Іще тривають дискусії про причини порушення балансу між біологічним і геологічним кругообігами, однак катастрофічні наслідки цього й повільні темпи їх усунення очевидні.